首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
As determined by isoelectric focusing, most patients with familial dysbetalipoproteinemia (FD) exhibit the homozygous apolipoprotein (apo) E2E2 phenotype. Only rarely does FD develop in the more common heterozygous phenotypes E3E2 or E4E2. In fact, only 1 to 4% of the E2E2 homozygotes will develop FD. We wondered whether this reduced penetrance of FD in E2E2 homozygotes could be due to additional heterogeneity in the APOE*2 allele. In the literature a number of different mutations causing an E2 isoelectric focusing variant have been described. To study the genetic heterogeneity of the APOE gene, hybridization of enzymatically amplified genomic DNA with mutation-specific oligonucleotide probes was applied. All FD patients (n = 40) with the E2E2 phenotype appeared to be homozygous for the common E2(arg158----cys) mutation. However, all three unrelated patients with the E3E2 phenotype exhibited the rare E2(lys146----gln) mutation due to an A----C substitution at nucleotide position 3,847 of the APOE gene. This mutation was not found among normolipidemic individuals with the E2E2 (n = 13) or E3E2 phenotype (n = 120) selected from a random population sample. Family studies of the three probands heterozygous for the E*2(lys146----gln) allele showed that this rare allele predisposes to FD with high penetrance. We conclude that FD is a genetically heterogeneous disease entity, displaying a recessive mode of inheritance with strongly reduced penetrance in case of the common E2(arg158----cys) variant and with a dominant mode of inheritance with high penetrance in case of the rare E2(lys146----gln) mutant. It should be noted that in this dominant form presymptomatic diagnosis is possible.  相似文献   

2.
Two new point mutations have been detected in the low density lipoprotein (LDL) receptor gene of a patient with a clinical diagnosis of homozygous familial hypercholesterolemia (FH). The patient is a compound heterozygote, in whom the mutant allele inherited from his English father has a single base substitution of A for G in exon 3, changing the codon for residue 80 in the mature protein from glutamic acid to lysine. The mutant allele inherited from his mother, who is of Irish origin, has a single base pair deletion in the codon for residue 743 in exon 15 that causes a frameshift and introduces a new stop codon in the adjacent position. The glu80 to lys mutation results in a transport-defective phenotype and a mature protein that migrates abnormally slowly on nonreduced SDS-PAGE, but normally under reducing conditions; this was confirmed by site-directed mutagenesis and expression in vitro. The deletion in exon 15 results in a null phenotype in which the putative truncated receptor protein cannot be detected in cultured skin fibroblasts and the amount of mRNA derived from the allele is reduced. The glu80 to lys mutation was found in a further five unrelated individuals in a sample of 200 FH patients from the London area and in 11 from a sample of 77 FH patients from Manchester. Haplotype analysis suggested that all the patients had inherited this allele from a common ancestor. The deletion in exon 15 was not found in the London sample, nor in any unrelated individuals in the Manchester sample.  相似文献   

3.
The structural gene locus for apolipoprotein E (apo E) is polymorphic. Three common alleles (epsilon 2, epsilon 3, epsilon 4) code for three major isoforms in plasma and determine six apo E phenotypes that may be identified by isoelectric focusing on polyacrylamide. To establish what fraction of the inherited variation in a normal plasma lipid and lipoprotein profile is attributable to the segregation of the common alleles at the apo E gene locus, we have estimated the average apo E allelic effects on plasma cholesterol (C), triglycerides, very low-density lipoprotein (VLDL)-C, VLDL-apo B, low-density lipoprotein (LDL)-C, LDL-apo B, and high-density lipoprotein (HDL)-C in a representative sample of normolipidemic individuals from Ottawa, Canada. Data from published studies were also analyzed by the same statistical procedures. As much as 16% of the genetic variance (8.3% of the total variance) for LDL-C could be accounted for by the apo E gene locus. After correction for differences in age, sex, height, and weight, it was found that the epsilon 2 allele lowered and the epsilon 4 allele raised total cholesterol, LDL-C, and LDL-apo B. No other gene has been identified that contributes as much to normal cholesterol variability. Analysis of these data and those of others also indicates that the apo E locus imparts a differential susceptibility to a variety of factors that promote hyperlipidemia. The hypothesis is proposed that the epsilon 2 allele protects against coronary heart disease (CHD) and, hence, gives a reproductive advantage that is balanced by a predisposition to CHD when the epsilon 2 is combined with a second, independent causative factor to give a reproductive disadvantage. A similar mechanism is proposed for the maintenance of the epsilon 4 allele in the population.  相似文献   

4.
5.
Genetic polymorphism of human plasma apolipoprotein A-IV has been detected by isoelectric focusing techniques followed by immunoblotting. The molecular basis for this apoA-IV polymorphism has been elucidated. Analysis of the protein coding sequences of the apoA-IV alleles 1 and 2 revealed a single G to T substitution in the apoA-IV-2 allele. The point mutation, occurring in a region highly conserved among the mouse, rat, and human A-IV apolipoproteins, converts the glutamine at position 360 of the mature protein to a histidine. This amino acid substitution adds one positive charge unit to the apoA-IV-1 isoprotein (pI 4.97) thus creating the more basic apoA-IV-2 isoprotein (pI 5.02). Computer analysis of the apoA-IV-2 allele revealed that the single G to T substitution results in the loss of a BbvI and a Fnu4HI restriction enzyme site and in the formation of a new restriction site for the enzyme SfaNI. Protein primary and secondary structure predictions were largely unaffected by this amino acid exchange. These results on the structure of the apoA-IV-1 and apoA-IV-2 alleles suggest that the three other rare isoproteins (apoA-IV-0, apoA-IV-3, and apoA-IV-4) are also due to nucleotide and subsequent amino acid substitutions in the apoA-IV sequence.  相似文献   

6.
A patient with severe hypertriglyceridemia and recurrent pancreatitis was found to have significantly decreased lipoprotein lipase (LPL) activity and normal apolipoprotein C-II concentration in post-heparin plasma. DNA analysis of the LPL gene revealed two mutations, one of which was a novel homozygous G-->C substitution, resulting in the conversion of a translation initiation codon methionine to isoleucine (LPL-1). The second was the previously reported heterozygous substitution of glutamic acid at residue 242 with lysine (LPL-242). In vitro expression of both mutations separately or in combination demonstrated that LPL-1 had approximately 3% protein mass and 2% activity, whereas LPL-242 had undetectable activity but normal mass. The combined mutation LPL-1-242 exhibited similar changes as for LPL-1, with markedly reduced mass, and for LPL-242, with undetectable activity. These results suggest that the homozygous initiator codon mutation rather than the heterozygous LPL-242 alteration was mainly responsible for the patient phenotypes.  相似文献   

7.
Cystathionine beta-synthase (CBS) deficiency is an autosomal recessive disorder characterized by homocystinuria and multisystem clinical disease. Patients responsive to pyridoxine usually have a milder clinical phenotype than do nonresponsive patients, and we studied the molecular pathology of this disorder in an attempt to understand the molecular basis of the clinical variation. We previously reported a T833C transition in exon 8 causing a substitution of threonine for isoleucine at codon 278 (I278T). By PCR amplification and sequencing of exon 8 from genomic DNA we have now detected the I278T mutation in 7 of 11 patients with in vivo pyridoxine responsiveness and in 0 of 27 pyridoxine-nonresponsive patients. Two pyridoxine-responsive patients are homozygous and five are heterozygous for I278T. We have now observed the I278T mutation in 41% (9 of 22) of the independent alleles in pyridoxine-responsive patients of varied ethnic backgrounds. In two of the compound heterozygotes we identified a novel mutation (G139R and E144K) in the other allele. The finding that the two patients who are homozygous for I278T have only ectopia lentis and mild bone demineralization suggests that this mutation is associated with both in vivo pyridoxine responsiveness and mild clinical disease. Compound heterozygous patients who have one copy of this missense mutation are likely to retain some degree of pyridoxine responsiveness.  相似文献   

8.
9.
We have investigated the molecular basis of 15 new alpha 1-antitrypsin (alpha 1AT) variants. Phenotyping by isoelectric focusing (IEF) was used as a screening method to detect alpha 1AT variants at the protein level. Genotyping was then performed by sequence analysis of all coding exons, exon-intron junctions, and the hepatocyte-specific promoter region including exon Ic. Three of these rare variants are alleles of clinical relevance, associated with undetectable or very low serum levels of alpha 1AT:the PI*Q0saarbruecken allele generated by a 1-bp C-nucleotide insertion within a stretch of seven cytosines spanning residues 360-362, resulting in a 3' frameshift and the acquisition of a stop codon at residue 376; a point mutation in the PI*Q0lisbon allele, resulting in a single amino acid substitution Thr68(ACC)-->Ile(ATC); and an in-frame trinucleotide deletion delta Phe51 (TTC) in the highly deficient PI*Mpalermo allele. The remaining 12 alleles are associated with normal alpha 1AT serum levels and are characterized by point mutations causing single amino acid substitutions in all but one case. This exception is a silent mutation, which does not affect the amino acid sequence. The limitation of IEF compared with DNA sequence analysis, for identification of new variants, their generation by mutagenesis, and the clinical relevance of the three deficiency alleles are discussed.  相似文献   

10.
11.
Familial hypobetalipoproteinaemia is a rare autosomal dominant disorder in which levels of apo-B-containing plasma lipoproteins are approximately half-normal in heterozygotes and virtually absent in homozygotes. Here we describe mutations of the apo-B gene that cause two different truncated variants of apo-B in unrelated individuals with hypobetalipoproteinaemia. One variant, apo-B(His1795----Met-Trp-Leu-Val-Thr-Term) is predicted to be 1799 amino acids long and arises from deletion of a single nucleotide (G) from leucine codon 1794. This protein was found at low levels in very low density and low density lipoprotein fractions in the blood. The second, shorter variant, apo-B(Arg1306----Term), is caused by mutation of a CpG dinucleotide in arginine codon 1306 converting it to a stop codon and predicting a protein of 1305 residues. The product of this allele could not be detected in the circulation. The differences in size and behaviour of these two variants compared to apo-B100 or apo-B48 point to domains that may be important for the assembly, secretion or stability of apo-B-containing lipoproteins.  相似文献   

12.
Three nonsense mutations responsible for group A xeroderma pigmentosum.   总被引:5,自引:0,他引:5  
The molecular basis of xeroderma pigmentosum (XP) group A was studied and 3 nonsense mutations of the XP-A complementing gene (XPAC) were identified. One was a nucleotide transition altering the Arg-228 codon (CGA) to a nonsense codon (TGA). This transition creates a new cleavage site for the restriction endonuclease HphI. Of 21 unrelated Japanese XP-A patients examined, 1 (XP39OS) was a homozygote for this mutation and 3 were compound heterozygotes for this mutation and for the splicing mutation of intron 3 reported previously which is the most common mutation in Japanese patients and creates a new cleavage site for the restriction endonuclease AlwNI. The second mutation was a nucleotide transition altering the Arg-207 codon (CGA) to a nonsense codon (TGA). A Palestinian patient (XP12RO) who had severe symptoms of XP was homozygous for this mutation. The third mutation was a nucleotide transversion altering the Tyr-116 codon (TAT) to a nonsense codon (TAA). This transversion creates a new cleavage site for the restriction endonuclease MseI. Of the Japanese patients, 2 with severe clinical symptoms had this mutant allele. One was a compound heterozygote for this mutation and for the splicing mutation, and the other was heterozygous for this mutation and homozygous for the splicing mutation. Although most XP-A patients such as XP12RO have severe skin symptoms and neurological abnormalities of the de Sanctis-Cacchione syndrome, patient XP39OS was an atypical XP-A patient who had mild skin symptoms and minimal neurological abnormalities. Our results suggest that the clinical heterogeneity in XP-A is due to different mutations in the XPAC gene. Moreover, our data indicate that almost all Japanese cases of XP-A are caused by one or more of the 3 mutations, i.e., the splicing mutation of intron 3 and the 2 nonsense mutations of codons 116 and 228. Therefore, by restriction fragment length polymorphism analysis of PCR-amplified DNA sequences using the 3 restriction enzymes described above, rapid and reliable diagnosis of XP-A can be achieved in almost all Japanese subjects including prenatal cases and carriers.  相似文献   

13.
Apolipoprotein C-III (APO C-III) is a structural component of very-low-density and high-density lipoprotein particles and is an inhibitor of lipoprotein lipase. In a study of genetic variation of apolipoproteins in the Mayan population of the Yucatán peninsula, we observed a quantitative polymorphism in APO C-III levels. This polymorphism is expressed as variation in immunoblot staining intensity following isoelectric focusing and as variation in plasma levels of APO C-III determined by radial immunodiffusion. This variation is consistent with the presence in Mayans of an allele associated with low levels of plasma APO C-III which we have designated APO C-III*D. Analysis of the distribution of APO C-III levels yields a gene frequency estimate for the deficiency allele of 0.59. There is a significant positive correlation between total plasma APO C-III levels and total plasma cholesterol and triglyceride levels, the lowest levels of cholesterol and triglycerides being seen in individuals homozygous for the deficiency allele. This observation is consistent with the proposed role of APO C-III in lipoprotein metabolism. Family data to determine whether this deficiency allele is due to mutation at the APO C-III structural locus were not available. However, molecular analysis using cloned probes from the APO A-I/C-III/A-IV gene cluster revealed no gross DNA rearrangement or deletion of sequences in this region in homozygous deficient individuals.  相似文献   

14.
We have developed a procedure for the determination of a common mutation in exon 9 of the human lipoprotein lipase (LPL) gene. The mutation is due to a C-G transversion which creates a premature termination codon (Ser447-Ter) and results in a truncated LPL molecule lacking the C-terminal dipeptide SER-GLY. The mutation can be detected by polymerase chain reaction (PCR) amplification of exon 9 using a modified 3' amplimer that produces a 140 bp product containing a site for the restriction enzyme Hinf-1 in the presence of the mutation (G allele). The G allele was in strong linkage disequilibrium with a Hind-III restriction fragment length polymorphism (RFLP) allele in intron 8. Genotype determinations for the mutation can be performed by PCR amplification of genomic DNA, digestion with Hinf-1, and analysis of the products by polyacrylamide gel electrophoresis. The allelic frequency of the Ser447-Ter mutation in normal male Caucasian controls was 0.11. The frequency of the mutation was lower in a group of subjects with primary hypertriglyceridemia compared to normolipidemic controls.  相似文献   

15.
ApoE phenotypes were determined in 615 unrelated Finnish individuals. The apoE gene frequencies observed (epsilon 2, 0.041; epsilon 3, 0.733; epsilon 4, 0.227) differ significantly from those in other populations. The frequency of the allele epsilon 2 was lower and that of epsilon 4 higher than in all other studied populations. Plasma lipids and apolipoproteins A-I, A-II and B were recorded in 207 of the typed subjects. By comparison with the most frequent homozygous apoE 3/3 phenotype, it was found that total cholesterol, LDL-cholesterol, and apoB concentrations were all markedly higher in apoE 4/4 and to a lesser degree in apoE 4/3 phenotypic groups. On the other hand, these lipid and apolipoprotein levels tended to be lower in E-2 heterozygotes. These data confirm and extend, in a different ethnic group, previous results of an effect of apoE genes on plasma lipoprotein concentrations. The data suggest that the apoE gene locus may be one factor responsible for the high LDL cholesterol concentrations in the Finnish population.  相似文献   

16.
Crigler-Najjar syndrome type I (CN I) is a rare autosomal recessive disorder due to hepatic dysfunction of uridine diphospho-glucuronosyltransferase (UGT) activity toward bilirubin. Complete inactivation of this enzyme causing CN I lead to accumulation of unconjugated bilirubin in serum and bile. Here we report the results of the molecular characterization of the uridine diphospho-glucuronosyltransferase 1A1 (UGT1A1) gene in a consanguineous family of Slovak Roms and an unrelated non-Romany family with CN I. Sequence analysis of UGT1A1 gene in all four Romany patients showed mutation in exon 4, a deletion of an A at codon 407 (1220delA), not yet described in homozygous status. All analysed patients were homozygous for 1220delA mutation and their 3 healthy sibs were heterozygous. The non-Romany patient was a compound heterozygote for two different deletions, 1220delA and 717-718delAG at codon 239. In the family of his cousin a son was born affected with CN I, who was homozygote for 717-718delAG mutation. His other niece affected with CN II was heterozygote for mutation 717-718delAG but homozygote for TA insertion and enhancer substitution T-3279G. Haplotype analysis suggests that the 1220delA mutation is identical by descent in both families, though they originate from two ethnically different populations (Slovaks vs. Roms).  相似文献   

17.
GPIHBP1 is an endothelial cell protein that serves as a platform for lipoprotein lipase-mediated processing of triglyceride-rich lipoproteins within the capillaries of heart, adipose tissue, and skeletal muscle. The absence of GPIHBP1 causes severe chylomicronemia. A hallmark of GPIHBP1 is the ability to bind lipoprotein lipase, chylomicrons, and apolipoprotein (apo-) AV. A homozygous G56R mutation in GPIHBP1 was recently identified in two siblings with chylomicronemia, and the authors of that study suggested that the G56R substitution was responsible for the hyperlipidemia. In this study, we created a human GPIHBP1 expression vector, introduced the G56R mutation, and tested the ability of the mutant GPIHBP1 to reach the cell surface and bind lipoprotein lipase, chylomicrons, and apo-AV. Our studies revealed that the G56R substitution did not affect the ability of GPIHBP1 to reach the cell surface, nor did the amino acid substitution have any discernible effect on the binding of lipoprotein lipase, chylomicrons, or apo-AV.  相似文献   

18.
Two novel mutations in the lipoprotein lipase (LPL) gene are described in an Austrian family: a splice site mutation in intron 1 (3 bp deletion of nucleotides -2 to -4) which results in skipping of exon 2, and a missense mutation in exon 5 which causes an asparagine for histidine substitution in codon 183 and complete loss of enzyme activity. A 5-year-old boy who exhibited all the clinical features of primary hyperchylomicronemia was a compound heterozygote for these two mutations. Nine other family members were investigated: seven were heterozygotes for the splice site mutation, one was a heterozygote for the missense mutation, and one had two wild-type alleles of the LPL gene. LPL activity in the post-heparin plasma of the heterozygotes was reduced to 49;-79% of the mean observed in normal individuals. Two of the heterozygotes had extremely high plasma triglyceride levels; in three of the other heterozygotes the plasma triglycerides were also elevated. As plasma triglycerides in carriers of one defective LPL allele can be normal or elevated, the heterozygotes of this family have been studied for a possible additional cause of the expression of hypertriglyceridemia in these subjects. Body mass index, insulin resistance, mutations in other candidate genes (Asn291Ser and Asp9Asn in the LPL gene, apoE isoforms, polymorphisms in the apoA-II gene and in the apoAI-CIII-AIV gene cluster, and in the IRS-1 gene) could be ruled out as possible factors contributing to the expression of hypertriglyceridemia in this family. A linkage analysis using the allelic marker D1S104 on chromosome 1q21;-q23 suggested that a gene in this region could play a role in the expression of hypertriglyceridemia in the heterozygous carriers of this family, but the evidence was not sufficiently strong to prove this assumption. Nevertheless, this polymorphic marker seems to be a good candidate for further studies.  相似文献   

19.
Apolipoprotein E plays a central role in clearance of lipoprotein remnants by serving as a ligand for low-density lipoprotein and apolipoprotein E receptors. Three common alleles (apolipoprotein E2, E3 and E4) give rise to six phenotypes. Apolipoprotein E3 is the ancestral form. Common apolipoprotein E isoforms derive from nucleotide substitutions in codons 112 and 158. Resulting cysteine-arginine substitutions cause differences in: affinities for low-density lipoprotein and apolipoprotein E receptors, low-density lipoprotein receptor activities, distribution of apolipoprotein E among lipoproteins, low-density lipoprotein formation rate, and cholesterol absorption. Accompanying changes in triglycerides, cholesterol and low-density lipoprotein may promote atherosclerosis development. Over 90% of patients with familial dysbetalipoproteinaemia have apolipoprotein E2/E2. Apolipoprotein E4 may promote atherosclerosis by its low-density lipoprotein raising effect. Establishment of apolipoprotein E isoforms may be important for patients with diabetes mellitus and several non-atherosclerotic diseases. Apolipoprotein E phenotyping exploits differences in isoelectric points. Isoelectric focusing uses gels that contain pH4–7 ampholytes and urea. Serum is directly applied, or prepurified by delipidation, lipoprotein precipitation or dialysation. Isoelectric focusing is followed by immunofixation/protein staining. Another approach is electro- or diffusion blotting, followed by protein staining or immunological detection with anti-apolipoprotein E antibodies and an enzyme-conjugated second antibody. Apolipoprotein E genotyping demonstrates underlying point mutations. Analyses of polymerase chain reaction products are done by allele-specific oligonucleotide probes, restriction fragment length polymorphism, single-stranded conformational polymorphism, the primer-guided nucleotide incorporation assay, or denaturating gradient gel electrophoresis. Detection with primers that either or not initiate amplification is performed with the amplification refractory mutation system. Disparities between phenotyping and genotyping may derive from isoelectric focusing methods that do not adequately separate apolipoprotein E posttranslational variants, storage artifacts or faint isoelectric focusing bands.  相似文献   

20.
Genotyping and sequence analysis of apolipoprotein E isoforms   总被引:24,自引:0,他引:24  
Apolipoprotein E (apoE), a polymorphic plasma protein, is essential for catabolism of lipoproteins by receptor-mediated endocytosis. One of the apoE isoforms (E2) differs in its binding affinity to specific receptors and contributes to variations in lipoprotein metabolism. Diagnosis of apoE isoforms is done by isoelectric focusing, but it is hindered by various degrees of post-translational sialylation of the apoE protein. Electrophoretically silent structural variations may also escape detection by this technique. We describe a method for genotyping apoE based on hybridization of allele-specific oligonucleotides with enzymatically amplified genomic DNA, which permits unambiguous diagnosis of six common apoE phenotypes within 24 h. Among 100 E2 alleles present in 81 unrelated individuals genotyped by this technique, we found two rare structural mutants of apoE in addition to the common E2 form, E2(158Arg----Cys). Automated sequencing of amplified DNA identified the rare mutants as E2(136Arg----Ser) and E2(145Arg----Cys). The genotypic method may complement or even replace isoelectric focusing for routine determination of apoE phenotypes and for identification of rare structural variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号