首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. We have used intracellular recording and staining, followed by reconstruction from serial sections, to characterize the responses and structure of projection neurons (PNs) that link the antennal lobe (AL) to other regions of the brain of the male sphinx moth Manduca sexta. 2. Dendritic arborizations of the AL PNs were usually restricted either to ordinary glomeruli or to the male-specific macroglomerular complex (MGC) within the AL neuropil. Dendritic fields in the MGC appeared to belong to distinct partitions within the MGC. PNs innervating the ordinary glomeruli had arborizations in a single glomerulus (uniglomerular) or in more than one ordinary glomerulus of one AL (multiglomerular) or in one case, in single glomeruli in both ALs (bilateral-uniglomerular). One PN innervated the MGC and many or all ordinary glomeruli of the AL. 3. PNs with dendritic arborizations in the ordinary glomeruli and PNs associated with the MGC typically projected both to the calyces of the ipsilateral mushroom body and to the lateral protocerebrum, but some differences in the patterns of termination in those regions have been noted for the two classes of PNs. One PN conspicuously lacked branches in the calyces but did project to the lateral protocerebrum. The PN innervating the MGC and many ordinary glomeruli projected to the calyces of the ipsilateral mushroom body and the superior protocerebrum. 4. Crude sex-pheromone extracts excited all neurons with arborizations in the MGC, although some were inhibited by other odors. One P(MGC) was excited by crude sex-pheromone extract and by a mimic of one component of the pheromone blend but was inhibited by another component of the blend. 5. PNs with dendritic arborizations in ordinary glomeruli were excited or inhibited by certain non-pheromonal odors. Some of these PNs also responded to mechanosensory stimulation of the antennae. 6. The PN with dendritic arborizations in the MGC and many ordinary glomeruli was excited by crude sex-pheromone extracts and non-pheromonal odors and also responded to mechanosensory stimulation of the antenna.  相似文献   

2.
Interneurons with dendritic branches in the antennal lobe of the male turnip moth, Agrotis segetum (Schiff., Lepidoptera: Noctuidae), were investigated with intracellular recording and staining methods. Seventeen projection neurons that transmit information from the antennal lobe to higher centers in the brain displayed dendritic arbors in the male specific macroglomerular complex (MGC) and responded to chemical components of the female sex pheromone used in species-specific sexual communication. Most of the projection neurons responded to several of the pheromone components tested, and a precise correlation between the location of the dendritic arborization and the physiological response could not be demonstrated. One MGC-projection neuron fit the definition of blend specialist. It did not respond to the individual components of the behaviorally active pheromone blend, but showed a strong response to the components when combined in the species-specific blend. Some of the projection neurons also showed clear responses to phenylacetaldehyde, a flower-produced compound and/or to (E)-2-hexenal, a common green-leaf volatile. In eight neurons, the axonal projection could be followed to the calyces of the mushroom body, and subsequently to the inferior lateral protocerebrum.Four local interneurons were characterized both morphologically and physiologically. Each neuron arborized extensively throughout the antennal lobe, and each responded to one or several of the pheromone compounds, and/or to one or both of the plant-produced compounds. One of the local interneurons responded exclusively to the pheromone blend, but not to the individual components.Abbreviations AL antennal lobe - AN antennal nerve - CB cell body - E2H (E)-2-hexenal - IACT inner antennocerebral tract - ILPR inferior lateral protocerebrum - LH lateral horn of the protocerebrum - LN local interneuron - MB mushroom body - MGC macroglomerular complex - OACT outer antennocerebral tract - PAA phenylacetaldehyde - PN projection interneuron - RN receptor neuron - Z5-10:OAc (Z)-5-decenyl acetate - Z5-10:OH (Z)-5-decenol - Z5-12:OAc (Z)-5-dodecenyl acetate - Z7-12:OAc (Z)-7-dodecenyl acetate - Z9-14:OAc (Z)-9-tetradecenyl acetate  相似文献   

3.
Antennal lobe interneurons of male Spodoptera littoralis (Boisd.) were investigated by using intracellular recording and staining techniques. Physiological and morphological characteristics of local interneurons and projection neurons responding to sex pheromone and plant-associated volatiles are described. The interneurons identified were divided into three groups, depending on their physiological response characteristics. Both types of interneurons, local interneurons and projection neurons, were described in all three groups. 1. Interneurons responding exclusively to sex pheromone stimuli, displayed different degrees of specificity. These neurons responded to either one, two, three or all four of the single sex pheromone or sex pheromone-like compounds tested. Most of these neurons also responded to a mixture of the two pheromone components present in the female S. littoralis blend. Two local interneurons and one projection neuron were identified as blend specialists, not responding to the single female produced sex pheromone components, but only to their mixture. Five pheromone specific projection neurons arborized in one or more subcompartments of the macroglomercular complex (MGC) and some of them had axonal branches in the calyces of the mushroom body and in different parts of the lateral protocerebrum. 2. Interneurons responding only to plant-associated volatiles varied highly in specificity. Neurons responding to only one of the stimuli, neurons responding to a variety of different odours and one neuron responding to all stimuli tested, were found. Three specialized local interneurons had arborizations only in ordinary glomeruli. One specialized and three less specialized local interneurons had arborizations within the MGC and the ordinary glomeruli. The projection neurons responding only to plant-associated volatiles had mostly uni- or multiglomerular arborizations within the ordinary glomeruli. 3. Interneurons responding to both sex pheromones and plant-associated stimuli varied in specificity. Individual interneurons that responded to few plant-associated odours mostly responded to several pheromone stimuli as well. Projection neurons responding to most of the plant-associated volatiles also responded to all pheromone stimuli. Two local interneurons responding to both stimulus groups, arborized within the MGC and the ordinary glomeruli. Projection neurons mostly arborized in only one ordinary glomerulus or in one compartment of the MGC. The variation in specificity and sensitivity of antennal lobe interneurons and structure-function correlations are discussed.  相似文献   

4.
Physiology and morphology of olfactory neurons associated with the protocerebral lobe around the alpha-lobe of the mushroom body were studied in the brain of the honeybee Apis mellifera using intracellular recording and staining techniques. The responses of neurons to behaviorally relevant odorants (a blend, and components of the Nasonov pheromone, and some other non-pheromonal odors) were recorded. Different response patterns were observed within different neurons, and often within the same neuron, in response to different stimuli. All the neurons stained had innervations in the protocerebral lobe. The cell profiles varied from cells connecting the antennal lobe with both the protocerebral and lateral protocerebral lobes (projection neurons), cells linking the pedunculus of the mushroom body with both the protocerebral and lateral protocerebral lobes (PE1 neurons), cells linking the alpha-lobe and protocerebral lobe with the calyces of the mushroom body (feedback neurons), and cells linking the alpha-lobe and protocerebral lobe with the antennal lobe (recurrent neurons), to cells connecting the protocerebral lobe with the contralateral protocerebrum (bilateral neurons). These findings suggest that the protocerebral lobe acts as an olfactory center associating with other centers, and provides multi-layered recurrent networks within the protocerebrum and between the deutocerebrum and the protocerebrum in honeybee olfactory pathways.  相似文献   

5.
1. We have used intracellular recording and staining with Lucifer Yellow, followed by reconstruction from serial sections, to characterize the responses and structure of olfactory neurons in the protocerebrum (PC) of the brain of the male sphinx moth Manduca sexta. 2. Many olfactory protocerebral neurons (PCNs) innervate a particular neuropil region lateral to the central body, the lateral accessory lobe (LAL), which appears to be important for processing olfactory information. 3. Each LAL is linked by its constituent neurons to the ipsilateral lateral PC, where projection neurons from the antennal lobe terminate, as well as to other regions of the PC. The LALs are also linked to each other by bilateral neurons with arborizations in each LAL. 4. Some PC neurons showed long-lasting excitation (LLE) that outlasted the olfactory stimuli by greater than or equal to 1 s, and as long as 30 s in some preparations. LLE was more frequently elicited by the sex-pheromone blend than by individual pheromone components. All bilateral neurons that showed LLE had arborizations in the LALs. LLE responses were also recorded in a single local neuron innervating the mushroom body. 5. In some other PC neurons, pheromonal stimuli elicited brief excitations that recovered to background firing rates less than 1 s after stimulation.  相似文献   

6.
The central projections of olfactory receptor cells associatedwith two distinct types of antennal sensilla in the sphinx mothManduca sexta were revealed by anterograde staining. In bothsexes, receptor axons that arise from sexually isomorphic, type-IItrichoid sensilla (and possibly some basiconic sensilla) projectto the spheroidal glomeruli in the ipsilateral antennal lobe.Each axon terminates in one glomerulus. Axons from a limitedregion of the antenna project to glomeruli throughout the lobe,arguing against strict topographic mapping of antennal receptorcells onto the array of glomeruli. Axons of sex-pheromone-selectivereceptor cells in the male-specific type-I trichoid sensillaproject exclusively to the sexually dimorphic macroglomerularcomplex (MGC). Axons from sensilla on the dorsal surface ofthe antenna are biased toward the medial MGC and those fromventral sensilla, toward the lateral MGC. Some receptor-cellaxons branch before reaching the MGC, but their terminals arealways confined to one of the two main glomerular divisionsof the MGC, the cumulus and toroid. These findings confirm thatprimary-afferent information about pheromonal and non-pheromonalodors is segregated in the antennal lobe and suggest that thereis a functional correspondence between particular olfactoryreceptor cells and specific glomeruli. Chem. Senses 20: 313–323,1995.  相似文献   

7.
1. Single unimodal (olfactory) or multimodal (olfactory and mechanosensory) neurons in the antennal lobe of the deutocerebrum of the American cockroach were characterized functionally by microelectrode recording, and their morphological types and positions in the brain were established by dye injection. Thus individual, physiologically identified neurons of known shape could be mapped in reference to the areas of soma groups, glomeruli, tracts and their projection regions in the brain. 2. All of these neurons send processes to deutocerebral glomeruli, i.e., the regions in which the axons of antennal sensory cells terminate. Output neurons have axons that leave the deutocerebrum whereas local interneurons are anaxonic. 3. An output neuron innervates only one glomerulus, sending its axon into the calyces of the corpora pedunculata (CP) in the protocerebrum, where by multiple branching they reach many CP neurons. The same axons send collaterals into the lateral lobe of the protocerebrum. Because of this arrangement, each deutocerebral glomerulus is represented individually and separately in the two projection regions. The fine structure of the endings of the deutocerebral axons in the protocerebrum is described. In the CP calyces they form microglomeruli with typical divergent connectivity. 4. A local interneuron innervates many glomeruli without sending processes to other parts of the brain. 5. Unimodal olfactory and multimodal neurons can be either output neurons or local interneurons; multimodal information is sent to the protocerebrum directly, in parallel with the unimodal information. 6. At least one glomerulus--the macroglomerulus of the male deutocerebrum--is specialized so as to provide an exclusive topographic representation of certain olfactory stimuli not represented elsewhere (female sexual pheromone).  相似文献   

8.
Social Hymenoptera such as ants or honeybees are known for their extensive behavioral repertories and plasticity. Neurons containing biogenic amines appear to play a major role in controlling behavioral plasticity in these insects. Here we describe the morphology of prominent serotonin-immunoreactive neurons of the antennal sensory system in the brain of an ant, Camponotus japonicus. Immunoreactive fibers were distributed throughout the brain and the subesophageal ganglion (SOG). The complete profile of a calycal input neuron was identified. The soma and dendritic elements are contralaterally located in the lateral protocerebrum. The neuron supplies varicose axon terminals in the lip regions of the calyces of the mushroom body, axon collaterals in the basal ring but not in the collar region, and other axon terminals ipsilaterally in the lateral protocerebrum. A giant neuron innervating the antennal lobe has varicose axon terminals in most of 300 glomeruli in the ventral region of the antennal lobe (AL) and a thick neurite that spans the entire SOG and continues towards the thoracic ganglia. However, neither a soma nor a dendritic element of this neuron was found in the brain or the SOG. A deutocerebral projection neuron has a soma in the lateral cell-body group of the AL, neuronal branches at most of the 12 glomeruli in the dorsocentral region of the ipsilateral AL, and varicose terminal arborizations in both hemispheres of the protocerebrum. Based on the present results, tentative subdivisions in neuropils related to the antennal sensory system of the ant brain are discussed.  相似文献   

9.
Signals of tens up to hundreds of thousands of (mostly olfactory) receptor cells on an insect antenna are switched to a comparatively low number of neurones in the antennal lobe of the deutocerebrum in circumscribed units of neuropile, the glomeruli. Each glomerulus is connected via its output neurone to two separate neuropiles (calyces of mushroom body, and lateral lobe) of the protocerebrum. Local interneurones interconnect between the glomeruli. Certain modes of convergence between receptors and central neurones provide for a very high sensitivity of the latter to certain odours and their sensitivity for complex odour stimuli, and in many cases for a marked multimodality. Anatomical and physiological data are given especially for pheromone sensitive neurones and their projections.  相似文献   

10.
The mushroom body structure is progressively more complicated within the superfamily Scarabaeoidea. In the basal families and coprophagous Scarabaeidae, the calyx region is asymmetrical and poorly developed but reaches the maximal degree of development in the phytophagous Scarabaeidae of the subfamilies Melolonthinae and Cetoniinae. These Scarabaeidae have two separate calyces; moreover, some species have additional regions of glomerular neuropile. The processes of different Kenyon cell types segregate into special subdivisions of vertical and medial lobes. It is assumed that a progressive development of the mushroom body in phytophagous Scarabaeidae is associated with the need to integrate olfactory and visual information.  相似文献   

11.
A subset of olfactory projection neurons in the brain of male Manduca sexta is described, and their role in sex pheromone information processing is examined. These neurons have extensive arborizations in the macroglomerular complex (MGC), a distinctive and sexually dimorphic area of neuropil in the antennal lobe (AL), to which the axons of two known classes of antennal pheromone receptors project. Each projection neuron sends an axon from the AL into the protocerebrum. Forty-one projection neurons were characterized according to their responses to electrical stimulation of the antennal nerve as well as olfactory stimulation of antennal receptors. All neurons exhibited strong selectivity for female sex pheromones. Other behaviorally relevant odors, such as plant volatiles, had no obvious effect on the activity of these neurons. Two broad physiological categories were found: cells that were excited by stimulation of the ipsilateral antenna with pheromones (29 out of 41), and cells that received a mixed input (inhibition and excitation) from pheromone pathways (12 out of 41). Of the cells in the first category, 13 out of 29 were equally excited in response to stimulation of the antenna with either the principal natural pheromone (bombykal) or a mimic of a second unidentified pheromone ('C-15') and were similarly excited by the natural pheromone blend. The remaining 16 out of 29 cells responded selectively, and in some cases, in a dose-dependent manner, to stimulation of the antenna with bombykal or C-15, but not both. Some of these neurons had dendritic arborizations restricted to only a portion of the MGC neuropil, whereas most had arborizations throughout the MGC. Of the cells in the second category, 9 out of 12 were excited by bombykal, inhibited by C-15, and showed a mixed response to the natural pheromone blend. For the other 3 out of 12 cells, the response polarity was reversed for the two chemically-identified odors. Two additional neurons, which were not tested with olfactory stimuli, were tonically inhibited in response to electrical stimulation of the ipsilateral antennal nerve. These observations suggest that some of the male-specific projection neurons may signal general pheromone-triggered arousal, whereas a smaller number can actively integrate inputs from the two know receptor classes (Bal- and C-15-selective) and may operate as 'mixture detectors' at this level of the olfactory subsystem that processes information about sex pheromones.  相似文献   

12.
李娜  李华  那杰 《昆虫知识》2008,45(2):327-329
蟋蟀脑由前脑、中脑和后脑三部分组成。前脑由1对蕈形体、中央复合体和视叶构成;每个蕈形体由2个冠、柄及与柄相连的α叶和β叶组成,是信息联络整合部位;中央复合体由中央体和脑桥组成,主要参与感觉信息的加工过程;视叶由神经节层、外髓和内髓组成,是视觉系统的中心。中脑由主要组成成分为嗅觉纤维球的嗅叶组成,是嗅觉系统的中心。后脑向后与食道下神经节相连。  相似文献   

13.
We have investigated the distribution of tyrosine-hydroxylase-like immunoreactivity in the cerebral ganglia of the American cockroach, Periplaneta americana. Groups of tyrosine-hydroxylase-immunoreactive cell bodies occur in various parts of the three regions of the cerebral ganglia. In the protocerebrum, single large neurons or small groups of neurons are located in the lateral neuropil, adjacent to the calyces, and in the dorsal portion of the pars intercerebralis. Small scattered cell bodies are found in the outer layers of the optic lobe, and clusters of larger cell bodies can be found in the deutocerebrum, medial and lateral to the antennal glomeruli. Thick bundles of tyrosine-hydroxylase-positive nerve fibers traverse the neuropil in the proto- and deutocerebrum and innervate the glomerular and the nonglomerular neuropil with fine varicose terminals. Dense terminal patterns are present in the medulla and lobula of the optic lobe, the pars intercerebralis, the medial tritocerebrum, and the area surrounding the antennal glomeruli, the central body and the mushroom bodies. The pattern of tyrosine-hydroxylase-like immunoreactivity is similar to that previously described for catecholaminergic neurons, but it is distinctly different from the distribution of histaminergic and serotonergic neurons.  相似文献   

14.
Discrimination of sex pheromone blends in the olfactory system of the moth   总被引:3,自引:1,他引:2  
Intracellular analysis of olfactory neurons in the internallobes of several speicies of months has revealed a psysiologisallydivorse population of projection neurons connecting the pheromone-processingcenter (the male-specific macroglormerular complex) with severalarea of the protocerebrum. Some of these output elements carryinformation about only a single pheromone in the female's complexblend, which is consistent with the ‘component hypothesis’of behavioral excitation. Other output neurons, which receivemore complex synaptic input, can distinguish the complete blendfrom the individual pheromones, thereby lending support to the‘blend hypothesis’ of behavioral excitation. Theresults suggest that even within the pheromone-processing subsystermin male insects, which is largely distinct from the rest ofthe olfactory system, there exist different but parallel linesof pheromonal information coding that ultimately govern thesteteotyped mate-seeking behaviors.  相似文献   

15.
Many noctuid moth species perceive ultrasound via tympanic ears that are located at the metathorax. Whereas the neural processing of auditory information is well studied at the peripheral and first synaptic level, little is known about the features characterizing higher order sound-sensitive neurons in the moth brain. During intracellular recordings from the lateral protocerebrum in the brain of three noctuid moth species, Heliothis virescens, Helicoverpa armigera and Helicoverpa assulta, we found an assembly of neurons responding to transient sound pulses of broad bandwidth. The majority of the auditory neurons ascended from the ventral cord and ramified densely within the anterior region of the ventro-lateral protocerebrum. The physiological and morphological characteristics of these auditory neurons were similar. We detected one additional sound-sensitive neuron, a brain interneuron with its soma positioned near the calyces of mushroom bodies and with numerous neuronal processes in the ventro-lateral protocerebrum. Mass-staining of ventral-cord neurons supported the assumption that the ventro-lateral region of the moth brain was the main target for the auditory projections ascending from the ventral cord.  相似文献   

16.
Crustacean-SIFamide (GYRKPPFNGSIFamide) is a novel neuropeptide that was recently isolated from crayfish nervous tissue. We mapped the localisation of this peptide in the median brain and eyestalk neuropils of the marbled crayfish (Marmorkrebs), a parthenogenetic crustacean. Our experiments showed that crustacean-SIFamide is strongly expressed in all major compartments of the crayfish brain, including all three optic neuropils, the lateral protocerebrum with the hemiellipsoid body, and the medial protocerebrum with the central complex. These findings imply a role of this peptide in visual processing already at the level of the lamina but also at the level of the deeper relay stations. Immunolabelling is particularly strong in the accessory lobes and the deutocerebral olfactory lobes that receive a chemosensory input from the first antennae. Most cells of the olfactory globular tract, a projection neuron pathway that links deuto- and protocerebrum, are labelled. This pathway plays a central role in conveying tactile and olfactory stimuli to the lateral protocerebrum, where this input converges with optic information. Weak labelling is also present in the tritocerebrum that is associated with the mechanosensory second antennae. Taken together, we suggest an important role of crustacean-SIFamidergic neurons in processing high-order, multimodal input in the crayfish brain.  相似文献   

17.
A large deutocerebral serotonin-immunoreactive neuron arborizes profusely in the glomeruli of the antennal lobes, and also sends neurites into the lateral lobe and the calyces of the mushroom bodies in the ipsilateral protocerebrum. Electron micrographs of the glomerular neuropil show that the main synapses of the serotonin-immunoreactive arborizations are output contacts with unidentified neuron profiles. Only a few synaptic input contacts with serotonin-labeled fibers were observed.  相似文献   

18.
Summary 322 neurons were recorded intracellularly within the central part of the insect brain and 150 of them were stained with Lucifer Yellow or cobaltous sulphide. Responses to mechanical, olfactory, visual and acoustical stimulation were determined and compared between morphologically different cell types in different regions of the central brain. Almost all neurons responded to multimodal stimulation and showed complex responses. It was not possible to divide the cells into different groups using physiological criteria alone.Extrinsic neurons with projections to the calyces connect the mushroom bodies with the deutocerebrum and also with parts of the diffuse protocerebrum. These cells probably give input to the mushroom body system. The majority are multimodal and they often show olfactory responses. Among those cells that extend from the antennal neuropil are neurons that respond to non-antennal stimulation (Figs. 1, 2).Extrinsic neurons with projections in the lobes of the mushroom bodies often project to the lateral protocerebrum. Anatomical and physiological evidence suggest that they form an output system of the mushroom bodies. They are also multimodal and often exhibit long lasting after discharges and changes in sensitivity and activity level, which can be related to specific stimuli or stimulus combinations (Figs. 3, 4).Extrinsic neurons, especially those projecting to the region where both lobes bifurcate, exhibit stronger responses to multimodal stimuli than other local brain neurons. Intensity coding for antennal stimulation is not different from other areas of the central protocerebrum, but the signal-tonoise ratio is increased (Fig. 5).Abbreviation AGT antenno-glomerular tract  相似文献   

19.
Summary In the moth Manduca sexta, the number and morphology of neuronal connections between the antennal lobes and the protocerebrum were examined. Cobalt injections revealed eight morphological types of neurons with somata adjacent to the AL neuropil that project in the inner, middle, and outer antenno-cerebral tracts to the protocerebrum. Neurons innervating the macroglomerular complex and many neurons with fibers in the inner antennocerebral tract have uniglomerular antennal-lobe arborizations. Most neurons in the middle and outer antenno-cerebral tracts, on the other hand, seem to innervate more than one glomerulus. Protocerebral areas receiving direct input from the antennal lobe include the calyces of the mushroom bodies, and circumscribed areas termed olfactory foci in the lateral horn of the protocerebrum and several other regions, especially areas in close proximity to the mushroom bodies. Fibers in the inner antenno-cerebral tract that innervate the male-specific macroglomerular complex have arborizations in the protocerebrum that are distinct from the projections of sexually non-specific neurons. Protocerebral neurons projecting into the antennal lobe are much less numerous than antennal-lobe output cells. Most of these protocerebral fibers enter the antennal lobe in small fiber tracts that are different from those described above. In the protocerebrum, these centrifugal cells arborize in olfactory foci and also in the inferior median protocerebrum and the lateral accessory lobes. The morphological diversity of connections between the antennal lobes and the protocerebrum, described here for the first time on a single-cell level, suggests a much greater physiological complexity of the olfactory system than has been assumed so far.  相似文献   

20.
1. We have characterized the responses and structure of olfactory descending neurons (DNs) that reside in the protocerebrum (PC) of the brain of male sphinx moths Manduca sexta and project toward thoracic ganglia. 2. Excitatory responses of DNs to pheromone blends were of two general types: (a) brief excitation (BE) that recovered to background in less than 1 s after the stimulus, and (b) long-lasting excitation (LLE) that outlasted the stimulus by greater than or equal to 1 s and, in many cases, as long as 30 s. Individual pheromone components were ineffective in eliciting LLE. 3. Some neurons showing LLE also exhibited state-dependent responses to pheromonal stimuli. When such neurons were in a state of low background firing, stimulation with pheromone blend elicited LLE. When they were in a state of LLE, an identical stimulus reduced firing for 5-10 s after which firing gradually increased to the initial higher level. 4. Thirteen stained DNs were reconstructed from serial sections for detailed analysis of their morphology in the brain. DNs exhibiting LLE had neurites concentrated in the lateral accessory lobes (LALs) in the protocerebrum and adjacent neuropil. Most DNs exhibiting only BE to pheromonal stimuli and other DNs showing responses only to visual or mechanosensory stimuli did not have branches in the LALs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号