首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of NADPH--cytochrome c reductase with oxygen, artificial acceptors and cytochrome P-450 was studied. The generation of superoxide anion radicals (O2-.) from the oxidation of adrenaline to adrenochrome catalysed by NADPH--cytochrome c reductase proceeds independently of the interaction of the enzyme with the artificial anaerobic acceptors cytochrome c or 2,6-dichlorophenol-indophenol. Propyl 3,4,5-trihydroxybenzoate inhibited competitively the adrenaline oxidation by isolated NADPH--cytochrome c reductase (Ki 3.2--4.7 micrometer) and inhibited non-competitively the cytochrome c reduction (Ki 92--109 micrometer). In contrast with the process of electron transfer to cytochrome c, the rate of reduction of cytochrome P-450 and the rate of oxidation of adrenaline in liver microsomal fraction are correlated. Hexobarbital increases the Vmax. of adrenaline oxidation without affecting the Km value, whereas metyrapone, a metabolic inhibitor decreases Vmax. without affecting the Km. From the results obtained, some conclusions about NADPH--cytochrome c reductase function were made.  相似文献   

2.
J D Dignam  H W Strobel 《Biochemistry》1977,16(6):1116-1123
(NADPH)-cytochrome P-450 reductase was purified to apparent homogeneity by a procedure utilizing nicotinamide adenine dinucleotide phosphate (NADP)-Sepharose affinity column chromatography. The purified flavoprotein has a molecular weight of 79 700 and catalyzes cytochrome P-450 dependent drug metabolism, as well as reduction of exogenous electron acceptors. Aerobic titration of cytochrome P-450 reductase with NADPH indicates that an air-stable reduced form of the enzyme is generated by the addition of 0.5 mol of NADPH per mole of flavin, as judged by spectral characteristics. Further addition of NADPH causes no other changes in the absorbance spectrum. A Km value for NADPH of 5 micron was observed when either cytochrome P-450 or cytochrome c was employed as electron acceptor. A Km value of 8 +/- 2 micron was determined for cytochrome c and a Km of 0.09 +/- 0.01 micron was estimated for cytochrome P-450.  相似文献   

3.
Cytochrome P-450 reductase and cytochrome P-450 fractions have been separated and partially purified from colonic mucosal microsomes of rat pretreated with phenobarbital or beta-naphthoflavone. Colonic cytochrome P-450 reductase has a molecular weight of 76,000. The Km values of colonic cytochrome P-450 reductase for the artificial electron acceptors cytochrome c, ferricyanide, and dichlorophenolindophenol and the electron donor NADPH are 6, 50, 11 and 11 microM, respectively. Immunochemical techniques identified the presence of beta-naphthoflavone Forms 1, 4 and 5 after beta-naphthoflavone treatment but beta-naphthoflavone Forms 1 and 4 and phenobarbital Form 1 after phenobarbital treatment.  相似文献   

4.
Significant dissociation of FMN from NADPH:cytochrome P-450 reductase resulted in loss of the activity for reduction of cytochrome b5 as well as cytochrome c and cytochrome P-450. However, the ability to reduce these electron acceptors was greatly restored upon incubation of FMN-depleted enzyme with added FMN. The reductions of cytochrome c and detergent-solubilized cytochrome b5 by NADPH:cytochrome P-450 reductase were greatly increased in the presence of high concentrations of KCl, although the stimulatory effect of the salt on cytochrome P-450 reduction was less significant. No apparent effect of superoxide dismutase could be seen on the rate or extent of cytochrome reduction in solutions containing high-salt concentrations. Complex formation of the flavoprotein with cytochrome c, which is known to be involved in the mechanism of non-physiological electron transfer, caused a perturbation in the absorption spectrum in the Soret-band region of cytochrome c, and its magnitude was enhanced by addition of KCl. Similarly, an appreciable increase in ellipticity in the Soret band of cytochrome c was observed upon binding with the flavoprotein. However, only small changes were found in absorption and circular dichroism spectra for the complex of NADPH:cytochrome P-450 reductase with either cytochrome b5 or cytochrome P-450. It is suggested that the high-salt concentration allows closer contact between the heme and flavin prosthetic groups through hydrophobic-hydrophobic interactions rather than electrostatic-charge pairing between the flavoprotein and the cytochrome which causes a faster rate of electron transfer. Neither alterations in the chemical shift nor in the line width of the bound FMN and FAD phosphate resonances were observed upon complex formation of NADPH:cytochrome P-450 reductase with the cytochrome.  相似文献   

5.
Rabbit lung and liver microsomes were subjected to three procedures which decreased NADPH cytochrome c reductase activity; flavoprotein antibody, trypsin and subtilisin digestion. The effects on benzphetamine and p-nitroanisole demethylation and amine metabolic-intermediate complex formation were investigated. In general, the proteolytic digestion had a greater inhibitory effect on oxidation reactions for a given loss of NADPH cytochrome c reductase activity than did flavoprotein antibody; and of the two proteases, subtilisin, which also diminishes the cytochrome b5 reduction pathway, had a greater inhibitory effect than trypsin. Subtilisin digestion had similar effects in both liver and lung microsomes; a loss of flavoprotein without a loss of cytochrome P-450; but whereas all three oxidative reactions decreased in unison as the flavoprotein was lost in the liver, benzphetamine demethylation was less susceptible to flavoprotein depletion than the other two reactions in lung microsomes. With trypsin digestion flavoprotein was removed without loss of cytochrome P-450 only in lung microsomes; in liver microsomes the cytochrome P-450 was susceptible to tryptic degradation. In lung microsomes, benzphetamine and p-nitroanisole demethylations were less susceptible to flavoprotein loss than metabolic-intermediate complex formation.  相似文献   

6.
Four different experimental studies are described which were designed to evaluate the role of oxycytochrome P-450 in the formation of superoxide anions and hydrogen peroxide. The use of lipophilic copper chelates with superoxide dismutase like activity revealed that the primary site of interaction of these agents is related to the inhibition of the flavoprotein. NADPH-cytochrome P-450 reductase. Measurements of the proton assisted nucleophilic displacement of superoxide from oxycytochrome P-450 by high concentrations of sodium azide indicated an increase in the rate of hydrogen peroxide formation concomitant with the inhibition of the N-demethylation of ethylmorphine. Studies on the effect of NADH on the rate of hydrogen peroxide formation during NADPH oxidation by liver microsomes failed to reveal a stimulatory or synergistic effect in a manner analogous to results obtained during the cytochrome P-450 dependent oxidation of substrates such as ethylmorphine. These results suggest that hydrogen peroxide formation may not require the reduction of oxycytochrome P-450 to peroxycytochrome P-450. Measurements of the reduction of succinylated cytochrome c using purified cytochrome P-450 and the flavoprotein, NADPH-cytochrome P-450 reductase, directly demonstrate the formation of superoxide anions. It is concluded that oxycytochrome P-450 may decompose to generate hydrogen peroxide.  相似文献   

7.
Chemical modification of cytochrome P-450 reductase was used to determine the involvement of charged amino acids in the interaction between the reductase and two forms of cytochrome P-450. Acetylation of 11 lysine residues of the reductase with acetic anhydride yielded a 20-40% decrease in the apparent Km of the reductase for cytochrome P-450b or cytochrome P-450c using either 7-ethoxycoumarin or benzphetamine as substrates. A 20-45% decrease in the Vmax was observed except for cytochrome P-450b with 7-ethoxycoumarin as substrate, where there was a 27% increase. Modification of carboxyl groups on the reductase with 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and methylamine, glycine methyl ester, or taurine as nucleophiles inhibited the interaction with the cytochromes P-450. We were able to modify 4.0, 7.9, and 5.9 carboxyl groups using methylamine, glycine methyl ester, or taurine, respectively. The apparent Km for cytochrome P-450c or cytochrome P-450b was increased 1.3- to 5.2-fold in a reconstituted monooxygenase assay with 7-ethoxycoumarin or benzphetamine as substrate. There were varied effects on the Vmax. There was no significant change in the conformation of the reductase upon chemical modification with either acetic anhydride or EDC. These results strongly suggest that electrostatic interactions as well as steric constraints play a role in the binding and electron transfer step(s) between the reductase and cytochrome P-450.  相似文献   

8.
The mechanism by which 2-bromo-4'-nitroacetophenone (BrNAP) inactivates cytochrome P-450c, which involves alkylation primarily at Cys-292, is shown in the present study to involve an uncoupling of NADPH utilization and oxygen consumption from product formation. Alkylation of cytochrome P-450c with BrNAP markedly stimulated (approximately 30-fold) its rate of anaerobic reduction by NADPH-cytochrome P-450 reductase, as determined by stopped flow spectroscopy. This marked stimulation in reduction rate is highly unusual in that Cys-292 is apparently not part of the heme- or substrate-binding site, and its alkylation by BrNAP does not cause a low spin to high spin state transition in cytochrome P-450c. Under aerobic conditions the rapid oxidation of NADPH catalyzed by alkylated cytochrome P-450c was associated with rapid reduction of molecular oxygen to hydrogen peroxide via superoxide anion. The intermediacy of superoxide anion, formed by the one-electron reduction of molecular oxygen, established that alkylation of cytochrome P-450c with BrNAP uncouples the catalytic cycle prior to introduction of the second electron. The generation of superoxide anion by decomposition of the Fe2+ X O2 complex was consistent with the observations that, in contrast to native cytochrome P-450c, alkylated cytochrome P-450c failed to form a 430 nm absorbing chromophore during the metabolism of 7-ethoxycoumarin. Alkylation of cytochrome P-450c with BrNAP did not completely uncouple the catalytic cycle such that 5-20% of the catalytic activity remained for the alkylated cytochrome compared to the native protein depending on the substrate assayed. The uncoupling effect was, however, highly specific for cytochrome P-450c. Alkylation of nine other rat liver microsomal cytochrome P-450 isozymes with BrNAP caused little or no increase in hydrogen peroxide formation in the presence of NADPH-cytochrome P-450 reductase and NADPH.  相似文献   

9.
The participation of the microsomal electron transport system involving cytochrome P-450 in ω-oxidation of fatty acids by a rat liver preparation was examined since ω-oxidation involves microsomal reactions requiring both NADPH and molecular oxygen.

ω-Oxidation of fatty acids was inhibited by CO and by the antibody against NADPH-cytochrome c reductase. The addition to the reaction mixture of drugs which interact with cytochrome P-450 inhibited ω-oxidation. It is concluded that the microsomal electron transport system involving cytochrome P-450 functions in ω-oxidation of fatty acids.  相似文献   


10.
Adrenocortical NADPH-cytochrome P-450 reductase (EC. 1.6.2.4) was purified from bovine adrenocortical microsomes by detergent solubilization and affinity chromatography. The purified cytochrome P-450 reductase was a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being electrophoretically homogeneous and pure. The cytochrome P-450 reductase was optically a typical flavoprotein. The absorption peaks were at 274, 380 and 45 nm with shoulders at 290, 360 and 480 nm. The NADPH-cytochrome P-450 reductase was capable of reconstituting the 21-hydroxylase activity of 17 alpha-hydroxyprogesterone in the presence of cytochrome P-45021 of adrenocortical microsomes. The specific activity of the 21-hydroxylase of 17 alpha-hydroxyprogesterone in the reconstituted system using the excess concentration of the cytochrome P-450 reductase, was 15.8 nmol/min per nmol of cytochrome P-45021 at 37 degrees C. The NADPH-cytochrome P-450 reductase, like hepatic microsomal NADPH-cytochrome P-450 reductase, could directly reduce the cytochrome P-45021. The physicochemical properties of the NADPH-cytochrome P-450 reductase were investigated. Its molecular weight was estimated to be 80 000 +/- 1000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical ultracentrifugation. The cytochrome P-450 reductase contained 1 mol each FAD and FMN as coenzymes. Iron, manganese, molybdenum and copper were not detected. The Km values of NADPH and NADH for the NADPH-cytochrome c reductase activity and those of cytochrome c for the activity of NADPH-cytochrome P-450 reductase were determined kinetically. They were 5.3 microM for NADPH, 1.1 mM for NADH, and 9-24 microM for cytochrome c. Chemical modification of the amino acid residues showed that a histidyl and cysteinyl residue are essential for the binding site of NADPH of NADPH-cytochrome P-450 reductase.  相似文献   

11.
The absence of correlation between the effect of aniline and aminoantipyrine derivatives on cytochrome P-450 reduction rate and its oxidation rate draw to the conclusion that the reductase reaction is not a limiting step of hydroxylation for all substrates. Km is found to be directly proportional to Vmax of hydroxylated substrates. Hence, in these reactions the Km value is determined not by the value Ks but by the kappa+2/kappa+1 ratio. Km is not a characteristic of the affinity of cytochrome P-450 to substrates. The calculations were made to show that cytochrome P-450 formed two types of the enzyme-substrate complexes containing one or two substrate molecules. The complex in which one molecule of cytochrome P-450 binds one substrate molecule is considered to be active.  相似文献   

12.
Glutathione reductase has been found to catalyze an NAD(P)H-dependent electron transfer to 2,4,6-trinitrobenzenesulfonate (TNBS). In the presence of oxygen TNBS is not consumed in the reaction, but is rapidly reoxidized with concomitant production of hydrogen peroxide. Cytochrome c can replace oxygen as the final electron acceptor, indicating that a one-electron transfer takes place. The rate is slightly higher in the absence than in the presence of oxygen, ruling out superoxide anion as an obligatory intermediate in cytochrome c reduction. In the absence of oxygen (or cytochrome c), TNBS limits the reaction and accepts a total of four electrons. The TNBS-dependent NADPH (or NADH) oxidation is markedly stimulated by NADP+, and to a smaller extent also by NAD+. The TNBS-dependent reactions are inhibited by excess of NADPH but not by NADH. The kinetics of these reactions are consistent with a branching reaction mechanism in which a pathway including a ternary complex between the two-electron reduced enzyme and NADP+ has the highest turnover. NADPH-dependent reductions of ferricyanide or 2,6-dichloroindophenol catalyzed by glutathione reductase are also markedly influenced by NADP+. Evidently NADP+ facilitates a shift of the catalyzed reaction from the normal two-electron reduction of glutathione disulfide to a more unspecific one-electron reduction of other acceptors. Spectral as well as kinetic data suggest that the rate of radical formation limits the reactions with the artificial electron acceptors and that NADP+ promotes this rate-limiting step.  相似文献   

13.
A flavoprotein catalyzing the reduction of cytochrome c by NADPH was solubilized and purified from microsomes of yeast grown anaerobically. The cytochrome c reductase had an apparent molecular weight of 70,000 daltons and contained one mole each of FAD and FMN per mole of enzyme. The reductase could reduce some redox dyes as well as cytochrome c, but could not catalyze the reduction of cytochrome b5. The reductase preparation also catalyzed the oxidation of NADPH with molecular oxygen in the presence of a catalytic amount of 2-methyl-1,4-naphthoquinone (menadione). The Michaelis constants of the reductase for NADPH and cytochrome c were determined to be 32.4 and 3.4 micron M, respectively, and the optimal pH for cytochrome c reduction was 7.8 to 8.0. It was concluded that yeast NADPH-cytochrome c reductase is in many respects similar to the liver microsomal reductase which acts as an NADPH-cytochrome P-450 reductase [EC 1.6.2.4].  相似文献   

14.
The interaction of trans-cinnamic acid with the cytochrome P-450 of microsomes derived from washed potato slices has been studied. The washing process increased the specific content of microsomal electron transport components and hence provided a useful material in which to study the interaction. Evidence is presented that the trans-cinnamic acid interacts with the cytochrome P-450, and that this interaction is analogous to "type 1" interactions of other cytochrome P-450 systems. This evidence includes the formation of a "type 1" substrate binding spectrum, an increased rate of reduction of cytochrome P-450 by NADPH in the presence of trans-cinnamic acid, an increased oxygen uptake and NADPH oxidation when trans-cinnamic acid is added to the microsomes in the presence of NADPH, and a close correlation between biophysical parameters of electron transport in the cytochrome P-450 system and enzymological parameters of the trans-cinnamic acid 4-hydroxulation reaction. The investigation has been extended to cytochrome P-450 systems of other tissues and it has been found that the trans-cinnamic acid 4-hydroxylation reaction cannot account for the presence of most of th cytochrome P-450 in several tissues. This suggests that other functions of higher plant cytochrome P-450 chains exist, and that the substrate specificityof the hemoprotein may vary in different plant tissues.  相似文献   

15.
Recent investigations in this laboratory on the mechanism of action of liver microsomal cytochrome P-450 (P-450 LM) and its interaction with other components of the hydroxylation system are presented. Two electrophoretically homogeneous forms of the cytochrome, phenobarbital-inducible P-450 LM2 and 5,6-benzoflavone-inducible P-450 LM4, so designated according to their relative electrophoretic mobilities, were used in these studies. Phosphatidylcholine is required in the reconstituted enzyme system for rapid electron transfer from NADPH to P-450 LM, catalyzed by NADPH-cytochrome P-450 reductase, as well as for maximal hydroxylation activity with either molecular oxygen or a peroxy compound serving as oxygen donor to the substrate. The phospholipid facilitates the binding of both substrate and reductase to P-450 LM and apparently causes a structural change in the cytochrome as shown by an increase in alpha-helical content, determined by circular dichroic spectrometry. P-450LM3 and LM4 are one-electron acceptors under anaerobic conditions, in accord with previous potentiometric titrations and product yield data, but in disagreement with previous titrations with reducing agents. The cause for the discrepancy between the present and earlier results is not yet fully understood. Stopped flow spectrophotometry was employed to detect intermediates in the reaction of peroxy compounds with P-450LM2. With m-chloroperbenzoic acid the intermediate formed has absorption maxima at 375, 425, and 540 nm in the absolute spectrum and at 370, 436, and 540 nm in the difference spectrum (intermediate minus oxidized form). A study of the magnitude of the spectral change at various peracid concentrations indicated that with this oxidant the reaction shows a dependence resembling a binding curve. These and other experiments with various oxidants, including cumente hydroperoxide, suggest a reversible two-step mechanism according to the reaction: P-450 LM + oxidant equilibrium C equilibrium D, where C may be an enzyme-oxidant complex and D is a spectral intermediate of unknown structure. A scheme is proposed for the mechanism of action of P-450 LM based on these and earlier studies, including evidence from deuterium isotope experiments for the formation of a substrate carbon radical prior to oxygen transfer.  相似文献   

16.
NADPH-cytochrome P-450 reductase with capacity to support cytochrome P-450-dependent drug metabolism and to reduce artificial electron acceptors has been purified to apparent homogeneity by solubilization with Renex 690 and chromatography on DEAE-Sephadex, Agarose and QAE-Sephadex. The purified protein migrates as a single band on native and SDS-polyacrylamide gel electrophoresis, exhibits a minimum molecular weight of 80,000 daltons and contains 1 molecule each of FAD and FMN per 80,000 molecular weight. The specific activity for cytochrome c as electron acceptor is 48.8 μmoles per min and for substrate hydroxylation of benzphetamine measured as NADPH oxidation in the presence of cytochrome P-450 and phosphatidylcholine is 2.5 μmoles per min.  相似文献   

17.
Carboxyl groups of NADPH-cytochrome P-450 reductase have been modified with the water-soluble carbodiimide EDC. Although there is no significant loss in DCPIP reduction the activity with cytochrome c and cytochrome P-450 LM2 as electron acceptors was inhibited by about 60 and 85%, respectively (1 h incubation time, 20 mM EDC). The inactivation by EDC was nearly completely prevented in the presence of cytochrome P-450 LM2, but not by bovine serum albumin. These results and crosslinking studies suggest that carboxyl groups of NADPH-cytochrome P-450 reductase are involved in charge-pair interactions to cytochrome c and to at least two amino groups of cytochrome P-450 LM2.  相似文献   

18.
Cytochrome P-450 LM4 (RH, reduced flavoprotein:oxygen oxidoreductase (RH-hydroxylating), EC 1.14.14.1) from rabbit liver microsomes was chemically modified with tetranitromethane. Nitration of two tyrosine residues inhibits the p-nitrophenetole O-deethylase activity of the enzyme by about 80%. Sequencing the 3-nitrotyrosine-containing peptides after HPLC tryptic peptide mapping reveals that mainly Tyr-243 and Tyr-271 are nitrated, whereas Tyr-71, Tyr-188 and Tyr-365 are modified to a lower extent. Nitration of tyrosine residues affects the complex formation with p-nitrophenetole, alpha-naphthoflavone and metyrapone as indicated by an increased affinity towards p-nitrophenetole and by a decreased affinity for the latter compounds. Furthermore, nitration interferes with the electron transfer from NADPH-cytochrome P-450-reductase to cytochrome P-450 LM4 resulting in a slowed down reduction reaction. The results suggest that Tyr-243 and Tyr-271 of cytochrome P-450 LM4 are functionally involved in the interaction with NADPH-cytochrome P-450 reductase.  相似文献   

19.
Site-directed mutagenesis was employed to investigate the role of Cys566 in the catalytic mechanism of rat liver NADPH-cytochrome P-450 oxidoreductase. Rat NADPH-cytochrome P-450 oxidoreductase and mutants containing either alanine or serine at position 566 were expressed in Escherichia coli and purified to homogeneity. Substitution of alanine at position 566 had no effect on enzymatic activity with the acceptors cytochrome c and ferricyanide but did increase trans-hydrogenase activity with 3-acetylpyridine adenine dinucleotide phosphate by 79%. The Km for NADPH was increased 2.5-fold, and the NADP+ KI was increased 4.8-fold compared with that found for the wild-type enzyme. The conservative substitution, Ser566, produced a 50% decrease in cytochrome c reductase activity whereas activity with ferricyanide was decreased 57%, and 3-acetylpyridine adenine dinucleotide phosphate activity was unaffected. The NADPH Km was increased 4.6-fold, and the NADP+ KI increased 7.6-fold. The dependence of cytochrome c reductase activity on the KCl concentration was markedly altered by the Cys566 substitutions. Maximum activity for the wild-type enzyme was observed at approximately 0.18 M KCl whereas maximum activity for the mutant enzymes was observed between 0.04 and 0.09 M KCl. The pH dependence of cytochrome c reductase activity, cytochrome c Km, and flavin content were unaffected by these substitutions. These results demonstrate that Cys566 is not essential for activity of rat liver NADPH-cytochrome P-450 oxidoreductase although the cysteine side chain does affect the interaction of NADPH with the enzyme.  相似文献   

20.
NADPH-cytochrome P-450 (cytochrome c) reductase (EC 1.6.2.4) was solubilized by detergent from microsomal fraction of wounded Jerusalem-artichoke (Helianthus tuberosus L.) tubers and purified to electrophoretic homogeneity. The purification was achieved by two anion-exchange columns and by affinity chromatography on 2',5'-bisphosphoadenosine-Sepharose 4B. An Mr value of 82,000 was obtained by SDS/polyacrylamide-gel electrophoresis. The purified enzyme exhibited typical flavoprotein redox spectra and contained equimolar quantities of FAD and FMN. The purified enzyme followed Michaelis-Menten kinetics with Km values of 20 microM for NADPH and 6.3 microM for cytochrome c. In contrast, with NADH as substrate this enzyme exhibited biphasic kinetics with Km values ranging from 46 microM to 54 mM. Substrate saturation curves as a function of NADPH at fixed concentration of cytochrome c are compatible with a sequential type of substrate-addition mechanism. The enzyme was able to reconstitute cinnamate 4-hydroxylase activity when associated with partially purified tuber cytochrome P-450 and dilauroyl phosphatidylcholine in the presence of NADPH. Rabbit antibodies directed against plant NADPH-cytochrome c reductase affected only weakly NADH-sustained reduction of cytochrome c, but inhibited strongly NADPH-cytochrome c reductase and NADPH- or NADH-dependent cinnamate hydroxylase activities from Jerusalem-artichoke microsomal fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号