首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies of the position effect resulting from chromosome rearrangements in Drosophila melanogaster have shown that replication distortions in polytene chromosomes correlate with heritable gene silencing in mitotic cells. Earlier studies mostly focused on the effects of euchromatin-heterochromatin rearrangements on replication and silencing of euchromatic regions adjacent to the heterochromatin breakpoint. This review is based on published original data and considers the effect of rearrangements on heterochromatin: heterochromatin blocks that are normally underrepresented or underreplicated in polytene chromosomes are restored. Euchromatin proved to affect heterochromatin, preventing its underreplication. The effect is opposite to the known inactivation effect, which extends from heterochromatin to euchromatin. The trans-action of heterochromatin blocks on replication of heterochromatin placed within euchromatin is discussed. Distortions of heterochromatin replication in polytene chromosomes are considered to be an important characteristic associated with the functional role of the corresponding genome regions.  相似文献   

2.
In polytene chromosomes of D. melanogaster the heterochromatic pericentric regions are underreplicated (underrepresented). In this report, we analyze the effects of eu-heterochromatic rearrangements involving a cluster of the X-linked heterochromatic (Xh) Stellate repeats on the representation of these sequences in salivary gland polytene chromosomes. The discontinuous heterochromatic Stellate cluster contains specific restriction fragments that were mapped along the distal region of Xh. We found that transposition of a fragment of the Stellate cluster into euchromatin resulted in its replication in polytene chromosomes. Interestingly, only the Stellate repeats that remain within the pericentric Xh and are close to a new eu-heterochromatic boundary were replicated, strongly suggesting the existence of a spreading effect exerted by the adjacent euchromatin. Internal rearrangements of the distal Xh did not affect Stellate polytenization. We also demonstrated trans effects exerted by heterochromatic blocks on the replication of the rearranged heterochromatin; replication of transposed Stellate sequences was suppressed by a deletion of Xh and restored by addition of Y heterochromatin. This phenomenon is discussed in light of a possible role of heterochromatic proteins in the process of heterochromatin underrepresentation in polytene chromosomes.  相似文献   

3.
4.
Intercalary heterochromatin consists of extended chromosomal domains which are interspersed throughout the euchromatin and contain silent genetic material. These domains comprise either clusters of functionally unrelated genes or tandem gene duplications and possibly stretches of noncoding sequences. Strong repression of genetic activity means that intercalary heterochromatin displays properties that are normally attributable to classic pericentric heterochromatin: high compaction, late replication and underreplication in polytene chromosomes, and the presence of heterochromatin-specific proteins. Late replication and underreplication occurs when the suppressor of underreplication protein is present in intercalary heterochromatic regions. Intercalary heterochromatin underreplication in polytene chromosomes results in free double-stranded ends of DNA molecules; ligation of these free ends is the most likely mechanism for ectopic pairing between intercalary heterochromatic and pericentric heterochromatic regions. No support has been found for the view that the frequency of chromosome aberrations is elevated in intercalary heterochromatin.  相似文献   

5.
The morphological characteristics of intercalary heterochromatin (IH) are compared with those of other types of silenced chromatin in the Drosophila melanogaster genome: pericentric heterochromatin (PH) and regions subject to position effect variegation (PEV). We conclude that IH regions in polytene chromosomes are binding sites of silencing complexes such as PcG complexes and of SuUR protein. Binding of these proteins results in the appearance of condensed chromatin and late replication of DNA, which in turn may result in DNA underreplication. IH and PH as well as regions subject to PEV have in common the condensed chromatin appearance, the localization of specific proteins, late replication, underreplication in polytene chromosomes, and ectopic pairing.  相似文献   

6.
7.
Heterochromatin,gene position effect and gene silencing   总被引:4,自引:0,他引:4  
Zhimulev IF  Beliaeva ES 《Genetika》2003,39(2):187-201
Genomes of higher eukaryotes consist of two types of chromatin: euchromatin and heterochromatin. Heterochromatin is densely packed material typically localized in telomeric and pericentric chromosome regions. Euchromatin transferred by chromosome rearrangements in the vicinity of heterochromatin is inactivated and acquires morphological properties of heterochromatin in the case of position effect variegation. One of the X chromosomes in mammal females and all paternal chromosome set in coccides become heterochromatic. The heterochromatic elements of the genome exhibit similar structural properties: genetic inactivation, compaction, late DNA replication at the S stage, and underrepresentation in somatic cells. The genetic inactivation and heterochromatin assembly are underlain by a specific genetic mechanism, silencing, which includes DNA methylation and posttranslational histone modification provided by the complex of nonhistone proteins. The state of silencing is inherited in cell generations. The same molecular mechanisms of silencing shared by all types of heterochromatic regions, be it unique or highly repetitive sequences, suggest the similar organization of these regions. No type of heterochromatin is a permanent structure as they all are formed at the strictly definite stages of early embryogenesis. Based on the bulk of evidence accumulated today, heterochromatin can be regarded as a morphological manifestation of genetic silencing.  相似文献   

8.
Genomes of higher eukaryotes consist of two types of chromatin: euchromatin and heterochromatin. Heterochromatin is densely packed material typically localized in telomeric and pericentric chromosome regions. Euchromatin transferred by chromosome rearrangements in the vicinity of heterochromatin is inactivated and acquires morphological properties of heterochromatin in the case of position effect variegation. One of the X chromosomes in mammal females and all paternal chromosome set in coccides become heterochromatic. The heterochromatic elements of the genome exhibit similar structural properties: genetic inactivation, compaction, late DNA replication at the S stage, and underrepresentation in somatic cells. The genetic inactivation and heterochromatin assembly are underlain by a specific genetic mechanism, silencing, which includes DNA methylation and posttranslational histone modification provided by the complex of nonhistone proteins. The state of silencing is inherited in cell generations. The same molecular mechanisms of silencing shared by all types of heterochromatic regions, be it unique or highly repetitive sequences, suggest the similar organization of these regions. No type of heterochromatin is a permanent structure as they all are formed at the strictly definite stages of early embryogenesis. Based on the bulk of evidence accumulated today, heterochromatin can be regarded as a morphological manifestation of genetic silencing.  相似文献   

9.
The normal morphology of the polytene chromosomes of the embryo suspensor of Phaseolus coccineus is that of a tightly condensed cord with heavily Feulgen staining centromeric heterochromatic regions (α-heterochromatin) and other accessory heterochromatic regions (β-heterochromatin). The replication pattern of the chromosomes has been determined by autoradiographic analysis of material pulsed with 3H-thymidine for various lengths of time. The DNA replication cycle reqires 4–6 hours for completion. During replication chromosome structure becomes diffuse and the β-heterochromatic regions are indistinguishable from the euchromatic regions. The euchromatin is the first to replicate, and replication begins simultaneously at numerous sites in the euchromatin. The β-heterochromatin replicates next, and finally the centromeric heterochromatin. Replication is essentially complete in each of these parts of the chromosome before DNA synthesis begins in the next. The chromosomes are composed of numerous longitudinally running Feulgen positive strands, the equivalent portions of which replicate simultaneously. This indicates that there must be close control of the replication cycle in sister strands.  相似文献   

10.
The formation of alpha and beta heterochromatin in chromosomes of Drosophila melanogaster was studied in salivary glands (SGs) and pseudonurse cells (PNCs). In SGs of X0, XY, XYY, XX and XXY individuals the amounts of alpha heterochromatin were similar, suggesting that the Y chromosome does not substantially contribute to alpha heterochromatin formation. Pericentric heterochromatin developed a linear sequence of blocks in PNCs, showing morphology of both alpha and beta heterochromatin. In situ hybridization with Rsp sequences (H o clone) revealed that the most proximal heterochromatic segment of the mitotic map (region h39) formed a polytenized block in PNCs. Dot analysis showed that the clone had a hybridization rate with PNC-DNA very close to that with DNA from mainly diploid head cells, whereas the homologous SG-DNA was dramatically underrepresented. A similar increase of DNA representation in PNC was found for AAGAC satellite DNA. The mitotic region h44 was found not to polytenize in the SG chromosome, whereas in PNC chromosome 2 this region was partly polytenized and presented as an array of several blocks of alpha and beta heterochromatin. The mapping of deficiencies with proximal breakpoints in the most distal heterochromatin segments h35 in arm 2L and h46 in 2R showed that the mitotic eu-heterochromatin transitions were located in SG chromosomes distally to the polytene 40E and 41C regions, respectively. Thus, the transition zones between mitotic hetero- and euchromatin are located in banded polytene euchromatin. A scheme for dynamic organization of pericentric heterochromatin in nuclei with polytene chromosomes is proposed. Received: 17 November 1995; in revised form: 10 April 1996 / Accepted: 18 September 1996  相似文献   

11.
12.
The behaviour of IH (intercalary heterochromatin) regions of Drosophila melanogaster polytene chromosomes was compared with that of euchromatin condensed as a result of position-effect variegation. Normally replicating regions, when subject to such an effect, were found to become among the last regions in the genome to replicate. It is shown that the factors which enhance position effect (low temperature, the removal of the Y chromosome, genetic enhancers of position effect) increase the weak point frequency in the IH, i.e. enhance DNA underreplication in these regions. We suggest that the similarity in the properties of IH, CH (centromeric heterochromatin) and the dense blocks induced by position effect is due to strong genetic inactivation and supercondensation caused by specific proteins in early development. The primary DNA structure is not likely to play a key role in this process.  相似文献   

13.
14.
Eukaryotic chromosomes contain regions of varying accessibility, yet DNA replication factors must access all regions. The first replication step is loading MCM complexes to license replication origins during the G1 cell cycle phase. It is not yet known how mammalian MCM complexes are adequately distributed to both accessible euchromatin regions and less accessible heterochromatin regions. To address this question, we combined time-lapse live-cell imaging with immunofluorescence imaging of single human cells to quantify the relative rates of MCM loading in euchromatin and heterochromatin throughout G1. We report here that MCM loading in euchromatin is faster than that in heterochromatin in early G1, but surprisingly, heterochromatin loading accelerates relative to euchromatin loading in middle and late G1. This differential acceleration allows both chromatin types to begin S phase with similar concentrations of loaded MCM. The different loading dynamics require ORCA-dependent differences in origin recognition complex distribution. A consequence of heterochromatin licensing dynamics is that cells experiencing a truncated G1 phase from premature cyclin E expression enter S phase with underlicensed heterochromatin, and DNA damage accumulates preferentially in heterochromatin in the subsequent S/G2 phase. Thus, G1 length is critical for sufficient MCM loading, particularly in heterochromatin, to ensure complete genome duplication and to maintain genome stability.  相似文献   

15.
Replication in the chromocentre heterochromatin of salivary gland polytene nuclei of Drosophila melanogaster has been examined by 3H-thymidine EM autoradiography. In vitro pulse labelling of salivary glands from late third instar larvae showed that the chromocentre heterochromatin replicates in synchrony with the euchromatin in the nucleus. Within the chromocentre region, the central compact mass, identified earlier as the alpha heterochromatin, did not incorporate 3H-thymidine at any stage of the S, while the surrounding beta heterochromatin was always labelled in nuclei with labelled euchromatin. In a second set of experiments, growing larvae from just after hatching till late third instar stages, were fed on food containing 3H-thymidine, and at the end of larval life, the incorporation in salivary gland nuclei was examined by EM autoradiography. A grain density analysis of the EM autoradiographs revealed that the alpha heterochromatin does not replicate at all from after hatching till late third instar while the beta heterochromatin replicates as much as the euchromatin. Non-replication of the alpha heterochromatin provides the explanation for the lowered amount of heterochromatin in the polytene nuclei compared to their diploid counterparts. Implications of these observations on the organization of chromocentre heterochromatin in polytene nuclei and its homology to the heterochromatic regions in mitotic chromosomes are discussed.  相似文献   

16.
F Cléard  M Delattre    P Spierer 《The EMBO journal》1997,16(17):5280-5288
An increase in the dose of the Su(var)3-7 locus of Drosophila melanogaster enhances the genomic silencing of position-effect variegation caused by centromeric heterochromatin. Here we show that the product of Su(var)3-7 is a nuclear protein which associates with pericentromeric heterochromatin at interphase, whether on diploid chromosomes from embryonic nuclei or on polytene chromosomes from larval salivary glands. The protein also associates with the partially heterochromatic chromosome 4. As these phenotypes and localizations resemble those described by others for the Su(var)2-5 locus and its heterochromatin-associated protein HP1, the presumed co-operation of the two proteins was tested further. The effect of the dose of Su(var)3-7 on silencing of a number of variegating rearrangements and insertions is strikingly similar to the effect of the dose of Su(var)2-5 reported by others. In addition, the two loci interact genetically, and the two proteins co-immunoprecipitate from nuclear extracts. The results suggest that SU(VAR)3-7 and HP1 co-operate in building the genomic silencing associated with heterochromatin.  相似文献   

17.
Hoechst 33258 fluorescent staining of Drosophila chromosomes   总被引:8,自引:2,他引:6  
Metaphase chromosomes of D. melanogaster, D. virilis and D. eopydei were sequentilly stained with quinacrine, 33258 Hoechst and Giemsa and photographed after each step. Hoechst stained chromosomes fluoresced much brighter and with different banding patterns than quinacrine stained ones. In contrast to mammalian chromosomes, Drosophia's quinacrine and Hoechst bright bands are all in centric heterochromatin and the banding patterns seem more taxonomically divergent than external morphological characteristics. Hoechst stained D. melanogaster chromosomes show unprecedented longitudinal differentiation by the heterochromatic regions; each arm of each autosome can be unambiguously identified and the Y shows eleven bright bands. The Hoechst stained Y can also be identified in polytene chromocenters. Centric alpha heterochromatin of each D. virilis autosome is composed of two blocks which can be differtiated by a combination of quinacrine and Hoechst staining. The distal block is always Q-H- while the proximal block is, for the various autosomes, either Q-H-, Q+H- or Q+H+. With these permutations of Hoechst and quinacrine staining, D. virilis autosomes can be unambiguously distinguished. The X and two autosomes have H+ heterochromatin which can easily be seen in polytene and interphase nuclei where it seems to aggregate and exclude H- heterochromatin. This affinity of fluorochrome similar heterochromatin was been seen in colcemide induced multiple somatic non-disjunctions where H+ chromosomes were distributed to one rosette and H- chromosomes were distributed to another. Knowing the base composition and base sequences of Drosophila satellites, we conclude that AT richness may be necessary but is certainly an insufficient requirement for quinacrine bright chromatin while GC richness may be a sufficient requirement for the absence of quinacrine or Hoechst brightness. Condensed euchromatin is almost as bright as Q+ heterochromatin. While chromatin condensation has little effect on Hoechst staining, it appears to be "the most important factor responsible for quinacrine brightness.' All existing data from D. virilis indicate that each fluorochrome distinct block of alpha heterochromatin may contain a single a single DNA molecule which is one heptanucleotide repeated two million times.  相似文献   

18.
D. F. Eberl  B. J. Duyf    A. J. Hilliker 《Genetics》1993,134(1):277-292
Constitutive heterochromatic regions of chromosomes are those that remain condensed through most or all of the cell cycle. In Drosophila melanogaster, the constitutive heterochromatic regions, located around the centromere, contain a number of gene loci, but at a much lower density than euchromatin. In the autosomal heterochromatin, the gene loci appear to be unique sequence genes interspersed among blocks of highly repeated sequences. Euchromatic genes do not function well when brought into the vicinity of heterochromatin (position-effect variegation). We test the possibility that the blocks of centromeric heterochromatin provide an environment essential for heterochromatic gene function. To assay directly the functional requirement of autosomal heterochromatic genes to reside in heterochromatin, the rolled (rl) gene, which is normally located deep in chromosome 2R heterochromatin, was relocated within small blocks of heterochromatin to a variety of euchromatic positions by successive series of chromosomal rearrangements. The function of the rl gene is severely affected in rearrangements in which the rl gene is isolated in a small block of heterochromatin, and these position effects can be reverted by rearrangements which bring the rl gene closer to any large block of autosomal or X chromosome heterochromatin. There is some evidence that five other 2R heterochromatic genes are also affected among these rearrangements. These findings demonstrate that the heterochromatic genes, in contrast to euchromatic genes whose function is inhibited by relocation to heterochromatin, require proximity to heterochromatin to function properly, and they argue strongly that a major function of the highly repeated satellite DNA, which comprises most of the heterochromatin, is to provide this heterochromatic environment.  相似文献   

19.
It has been previously shown that the SuUR gene encodes a protein located in intercalary and pericentromeric heterochromatin in Drosophila melanogaster polytene chromosomes. The SuUR mutation suppresses the formation of ectopic contacts and DNA underreplication in polytene chromosomes; SuUR+ in extra doses enhances the expression of these characters. This study demonstrates that heterochromatin-dependent PEV silencing is also influenced by SuUR. The SuUR protein localizes to chromosome regions compacted as a result of PEV; the SuUR mutation suppresses DNA underreplication arising in regions of polytene chromosomes undergoing PEV. The SuUR mutation also suppresses variegation of both adult morphological characters and chromatin compaction observed in rearranged chromosomes. In contrast, SuUR+ in extra doses and its overexpression enhance variegation. Thus, SuUR affects PEV silencing in a dose-dependent manner. However, its effect is expressed weaker than that of the strong modifier Su(var)2-5.  相似文献   

20.
In polytene chromosomes of Drosophila melanogaster, regions of pericentric heterochromatin coalesce to form a compact chromocenter and are highly underreplicated. Focusing on study of X chromosome heterochromatin, we demonstrate that loss of either SU(VAR)3-9 histone methyltransferase activity or HP1 protein differentially affects the compaction of different pericentric regions. Using a set of inversions breaking X chromosome heterochromatin in the background of the Su(var)3-9 mutations, we show that distal heterochromatin (blocks h26-h29) is the only one within the chromocenter to form a big "puff"-like structure. The "puffed" heterochromatin has not only unique morphology but also very special protein composition as well: (i) it does not bind proteins specific for active chromatin and should therefore be referred to as a pseudopuff and (ii) it strongly associates with heterochromatin-specific proteins SU(VAR)3-7 and SUUR, despite the fact that HP1 and HP2 are depleted particularly from this polytene structure. The pseudopuff completes replication earlier than when it is compacted as heterochromatin, and underreplication of some DNA sequences within the pseudopuff is strongly suppressed. So, we show that pericentric heterochromatin is heterogeneous in its requirement for SU(VAR)3-9 with respect to the establishment of the condensed state, time of replication, and DNA polytenization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号