首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epr, a minor extracellular protease, is involved in the swarming motility of Bacillus subtilis . It does so by providing essential signals required for swarming. It has also been demonstrated that DegU is required for swarming and that it occurs at very low levels of DegU∼P and is inhibited at high levels of DegU∼P. In this study, we show that maximal epr expression is observed at very low concentrations of DegU∼P, whereas it is repressed at high DegU∼P. A parallel effect of DegU∼P levels on swarming motility is also observed, where very low levels of DegU∼P support swarming and excessive DegU∼P abolishes swarming. We further demonstrate that the defect of swarming motility in a degU strain can be rescued, albeit incompletely, by increased expression of an exogenous epr gene. We also show that an additional extracellular factor(s), apart from epr , regulated by DegU, is required for robust swarming.  相似文献   

3.
Acetoin is widely used in food and other industries. A bdhA and acoA double-knockout strain of Bacillus subtilis produced acetoin at 0.72?mol/mol, a 16.4?% increased compared to the wild type. Subsequent overexpression of the alsSD operon enhanced the acetolactate synthase activity by 52 and 66?% in growth and stationary phases, respectively. However, deletion of pta gene caused little increase of acetoin production. For acetoin production by the final engineered strain, BSUW06, acetoin productivity was improved from 0.087?g/l?h, using M9 medium plus 30?g glucose/l under micro-aerobic conditions, to 0.273?g/h?l using LB medium plus 50?g glucose/l under aerobic conditions. In fermentor culture, BSUW06 produced acetoin up to 20?g/l.  相似文献   

4.
NADPH is an essential cofactor for many enzymatic reactions including glutathione metabolism and fat and cholesterol biosynthesis. We have reported recently an important role for mitochondrial NADP(+)-dependent isocitrate dehydrogenase in cellular defense against oxidative damage by providing NADPH needed for the regeneration of reduced glutathione. However, the role of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is still unclear. We report here for the first time that IDPc plays a critical role in fat and cholesterol biosynthesis. During differentiation of 3T3-L1 adipocytes, both IDPc enzyme activity and its protein content were increased in parallel in a time-dependent manner. Increased expression of IDPc by stable transfection of IDPc cDNA positively correlated with adipogenesis of 3T3-L1 cells, whereas decreased IDPc expression by an antisense IDPc vector retarded adipogenesis. Furthermore, transgenic mice with overexpressed IDPc exhibited fatty liver, hyperlipidemia, and obesity. In the epididymal fat pads of the transgenic mice, the expressions of adipocyte-specific genes including peroxisome proliferator-activated receptor gamma were markedly elevated. The hepatic and epididymal fat pad contents of acetyl-CoA and malonyl-CoA in the transgenic mice were significantly lower, whereas the total triglyceride and cholesterol contents were markedly higher in the liver and serum of transgenic mice compared with those measured in wild type mice, suggesting that the consumption rate of those lipogenic precursors needed for fat biosynthesis must be increased by elevated IDPc activity. Taken together, our findings strongly indicate that IDPc would be a major NADPH producer required for fat and cholesterol synthesis.  相似文献   

5.
The stringent response is a universal adaptive mechanism to protect bacteria from nutritional and environmental stresses. The role of the stringent response during lipid starvation has been studied only in Gram‐negative bacteria. Here, we report that the stringent response also plays a crucial role in the adaptation of the model Gram‐positive Bacillus subtilis to fatty acid starvation. B. subtilis lacking all three (p)ppGpp‐synthetases (RelBs, RelP and RelQ) or bearing a RelBs variant that no longer synthesizes (p)ppGpp suffer extreme loss of viability on lipid starvation. Loss of viability is paralleled by perturbation of membrane integrity and function, with collapse of membrane potential as the likely cause of death. Although no increment of (p)ppGpp could be detected in lipid starved B. subtilis, we observed a substantial increase in the GTP/ATP ratio of strains incapable of synthesizing (p)ppGpp. Artificially lowering GTP with decoyinine rescued viability of such strains, confirming observations that low intracellular GTP is important for survival of nutritional stresses. Altogether, our results show that activation of the stringent response by lipid starvation is a broadly conserved response of bacteria and that a key role of (p)ppGpp is to couple biosynthetic processes that become detrimental if uncoordinated.  相似文献   

6.
7.
8.
Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost-effective process remains a challenge. Our work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose-derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism (pH 5.0-5.5) is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with Gram-positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes. These include the development of enzyme-based systems which eliminate the need for dilute acid hydrolysis or other pretreatments, improvements in existing pretreatments for enzymatic hydrolysis, process improvements to increase the effective use of cellulase and hemicellulase enzymes, improvements in rates of ethanol production, decreased nutrient costs, increases in ethanol concentrations achieved in biomass beers, increased resistance of the biocatalysts to lignocellulosic-derived toxins, etc. To be useful, each of these improvements must result in a decrease in the cost for ethanol production. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

9.
微生物木糖发酵产乙醇的代谢工程   总被引:1,自引:0,他引:1  
张颖  马瑞强  洪浩舟  张维  陈明  陆伟 《生物工程学报》2010,26(10):1436-1443
利用木质纤维素发酵生产乙醇具有广泛的应用前景。而自然界中缺少有效转化木糖为乙醇的微生物是充分利用纤维素水解产物、提高乙醇产率、降低生产成本的关键因素。多年来研究者利用分子生物学技术对微生物菌株进行了代谢工程改造,使其能更有效地利用木糖生产乙醇。以下主要对运动发酵单胞菌、大肠杆菌和酵母等候选产乙醇微生物的木糖代谢工程研究进展进行了概述。  相似文献   

10.
Summary A gene for allosteric lactate dehydrogenase (LDH) of Lactobacillus casei ATCC393 was transferred into Bacillus subtilis. The LDH was produced in a growth-associated type, and comprised up to 40 % of the total cellular protein. The maximum specific activity in the transformant was 208 U/mg protein which was approximately 16 times higher than in L. casei or in the previously constructed Escherichia coli transformant.  相似文献   

11.
12.
13.
A synthetic medium was developed by the pulse and medium-shift technique for the continuous cultivation of Bacillus stearothermophilus strain LLD-15 (NCIMB 12428) under anaerobic conditions. This mutant strain lacks L-lactate dehydrogenase activity, and is a promising candidate for the production of ethanol from pentoses and hexoses, using a high-temperature two-stage process. The final medium contained four amino acids and five vitamins, and growth characteristics in this medium compared well with those in complex medium containing yeast extract and tryptone. At 70 degrees C, the medium was capable of supporting good anaerobic and aerobic growth at 10 g input sucrose l-1. High ethanol production indicated that pyruvate metabolism probably occurred via the combined activity of the pyruvate-formate-lyase pathway and pyruvate dehydrogenase.  相似文献   

14.
Diacetyl, a highly valuable product that is extensively used as an ingredient of food, tobacco, and daily chemicals such as perfumes, can be produced from the nonenzymatic oxidative decarboxylation of α-acetolactate during bacterial fermentation and converted to acetoin and 2,3-butanediol by 2,3-butanediol dehydrogenase. In the present study, Bacillus sp. DL01, which gives high acetoin production, was metabolically engineered to improve diacetyl production. After the deletion of α-acetolactate decarboxylase (ALDC)-encoding gene (alsD) by homologous recombination, the engineered strain, named Bacillus sp. DL01-ΔalsD, lost ALDC activity and produced 1.53 g/L diacetyl without acetoin and 2,3-butanediol accumulation. The channeling of carbon flux into diacetyl biosynthetic pathway was amplified by an overexpressed α-acetolactate synthase (ALS)-encoding gene (alsS) in Bacillus sp. DL01-ΔalsD-alsS, which produced 4.02 g/L α-acetolactate and 1.94 g/L diacetyl, and the conversion from α-acetolactate to diacetyl was increased by 1-fold after 20 mM Fe3+ was added to the fermentation medium. A titer of 8.69 g/L diacetyl, the highest reported diacetyl production, was achieved by fed-batch fermentation in optimal conditions using the metabolically engineered strain of Bacillus sp. DL01-ΔalsD-alsS. These results are of great importance as a new method for the efficient production of diacetyl by food-safe bacteria.  相似文献   

15.
Natural isolates of Bacillus subtilis exhibit a robust multicellular behavior known as swarming. A form of motility, swarming is characterized by a rapid, coordinated progression of a bacterial population across a surface. As a collective bacterial process, swarming is often associated with biofilm formation and has been linked to virulence factor expression in pathogenic bacteria. While the swarming phenotype has been well documented for Bacillus species, an understanding of the molecular mechanisms responsible remains largely isolated to gram-negative bacteria. To better understand how swarming is controlled in members of the genus Bacillus, we investigated the effect of a series of gene deletions on swarm motility. Our analysis revealed that a strain deficient for the production of surfactin and extracellular proteolytic activity did not swarm or form biofilm. While it is known that surfactin, a lipoprotein surfactant, functions in swarming motility by reducing surface tension, this is the first report demonstrating that general extracellular protease activity also has an important function. These results not only help to define the factors involved in eliciting swarm migration but support the idea that swarming and biofilm formation may have overlapping control mechanisms.  相似文献   

16.
Dark fermentation is an attractive option for hydrogen production since it could use already existing reactor technology and readily available substrates without requiring a direct input of solar energy. However, a number of improvements are required before the rates and yields of such a process approach those required for a practical process. Among the options for achieving the required advances, metabolic engineering offers some powerful tools for remodeling microbes to increase product production rates and molar yields. Here we review the current metabolic engineering tool box that is available, discuss the current status of engineering efforts as applied to dark hydrogen production, and suggest areas for future improvements.  相似文献   

17.
Fan  Xiaoguang  Wu  Heyun  Jia  Zifan  Li  Guoliang  Li  Qiang  Chen  Ning  Xie  Xixian 《Applied microbiology and biotechnology》2018,102(20):8753-8762

In this study, a uridine and acetoin co-production pathway was designed and engineered in Bacillus subtilis for the first time. A positive correlation between acetoin and uridine production was observed and investigated. By disrupting acetoin reductase/2,3-butanediol dehydrogenasegenebdhA, the acetoin and uridine yield was increased while 2,3-butanediol formation was markedly reduced. Subsequent overexpression of the alsSD operon further improved acetoin yield and abolished acetate formation. After optimization of fermentation medium, key supplementation strategies of yeast extract and soybean meal hydrolysate were identified and applied to improve the co-production of uridine and acetoin. With a consumption of 290.33 g/L glycerol, the recombinant strain can accumulate 40.62 g/L uridine and 60.48 g/L acetoin during 48 h of fed-batch fermentation. The results indicate that simultaneous production of uridine and acetoin is an efficient strategy for balancing the carbon metabolism in engineered Bacillus subtilis. More importantly, co-production of value-added products is a possible way to improve the economics of uridine fermentation.

  相似文献   

18.
19.
20.
We present redirection of electron flow to more efficient proton pumping branches within respiratory chains as a generally applicable metabolic engineering strategy, which tailors microbial metabolism to the specific requirements of high cell density processes by improving product and biomass yields. For the example of riboflavin production by Bacillus subtilis, we reduced the rate of maintenance metabolism by about 40% in a cytochrome bd oxidase knockout mutant. Since the putative Yth and the caa(3) oxidases were of minor importance, the most likely explanation for this improvement is translocation of two protons per transported electron via the remaining cytochrome aa(3) oxidase, instead of only one proton via the bd oxidase. The reduction of maintenance metabolism, in turn, significantly improved the yield of recombinant riboflavin and B. subtilis biomass in fed-batch cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号