首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Systematic reviews and meta‐analyses often examine data from diverse taxa to identify general patterns of effect sizes. Meta‐analyses that focus on identifying generalisations in a single taxon are also valuable because species in a taxon are more likely to share similar unique constraints. We conducted a comprehensive phylogenetic meta‐analysis of flight initiation distance in lizards. Flight initiation distance (FID) is a common metric used to quantify risk‐taking and has previously been shown to reflect adaptive decision‐making. The past decade has seen an explosion of studies focused on quantifying FID in lizards, and, because lizards occur in a wide range of habitats, are ecologically diverse, and are typically smaller and differ physiologically from the better studied mammals and birds, they are worthy of detailed examination. We found that variables that reflect the costs or benefits of flight (being engaged in social interactions, having food available) as well as certain predator effects (predator size and approach speed) had large effects on FID in the directions predicted by optimal escape theory. Variables that were associated with morphology (with the exception of crypsis) and physiology had relatively small effects, whereas habitat selection factors typically had moderate to large effect sizes. Lizards, like other taxa, are very sensitive to the costs of flight.  相似文献   

2.
There are many anti‐predatory escape strategies in animals. A well‐established method to assess escape behavior is the flight initiation distance (FID), which is the distance between prey and predator at which an animal flees. Previous studies in various species throughout the animal kingdom have shown that group size, urbanization, and distance to refuge and body mass affect FID. In most species, FID increases if body mass, group size or distance to refuge decreases. However, how age and sexual dimorphism affect FID is rather unknown. Here, we assess the escape behavior and FID of the black redstart (Phoenicurus ochruros), a small turdid passerine. When approached by a human, males initiated flights later, that is allowing a closer approach than females. Males of this species are more conspicuous, and therefore, may exhibit aposematism to deter potential predators or are less fearful than females. Additionally, juveniles fled at shorter distances and fled to lower heights than adults. Lastly, concerning escape strategy, black redstarts, unless other passerine birds, fled less often into cover, but rather onto open or elevated spots. Black redstarts are especially prone to predation by ambushing predators that might hide in cover. Hence, this species most likely has a higher chance of escaping by fleeing to an open spot rather than to a potentially risky cover.  相似文献   

3.
4.
As human populations grow and come into more frequent contact with wildlife, it is important to understand how anthropogenic disturbance alters wildlife behaviour. Using fine‐scale spatial analyses, we examined how proximity to human settlements affects antipredator responses of ungulates. We studied seven common ungulate species (Kirk's dik‐dik, Thomson's gazelle, impala, common warthog, common wildebeest, common zebra and Masai giraffe) in the Tarangire–Manyara ecosystem in northern Tanzania. In zebra and giraffe, flight responses to humans were significantly more likely when closer to settlements; however, there was a weak relationship between flight responses and distance to settlement in all other species. While there was largely a weak relationship between proximity to human settlements, the distribution of settlements in the landscape appears to affect wildlife behaviour, suggesting that animals perceive and respond to spatial variation in risk exerted by humans.  相似文献   

5.
The relationship between preflight risk assessment by prey andthe escape behaviors they perform while fleeing from predatorsis relatively unexplored. To examine this relationship, a humanobserver approached groups of Columbian black-tailed deer (Odocoileushemionus columbianus), varying his behavior to simulate moreor less threatening behavior. We measured the focal deer's angleof escape, distance moved during flight, duration of trottingand stotting behavior, and change in elevation during flight.Analyses revealed positive relationships between the distancemoved during flight and the distance at which they fled. Whenflight was initiated when the approacher was close, deer fledrelatively shorter distances and took flight paths at more acuteangles, a property that would force a real predator to changedirection suddenly. Our results indicate that deer do not compensatefor allowing the observer to approach more closely by fleeinggreater distances. Rather, distance moved and flight initiationdistance are linked by level of reactivity and habituation:more reactive or less habituated deer both flee at a greaterdistance and move away to a greater distance during flight.More threatening behavior by the approacher led to longer durationsof rapid flight behavior (e.g., trotting and stotting), anddeer tended to flee uphill and into taller vegetation, usingthese landscape features as refuge from danger. Finally, weprovide the first evidence for Pitcher's untested "antiambush"hypothesis for the function of stotting and discuss its significance.In general, both preflight predator behavior and habitat featuresinfluence both duration and direction of escape.  相似文献   

6.
Basal metabolic rate (BMR) constitutes the minimal metabolic rate in the zone of thermo‐neutrality, where heat production is not elevated for temperature regulation. BMR thus constitutes the minimum metabolic rate that is required for maintenance. Interspecific variation in BMR in birds is correlated with food habits, climate, habitat, flight activity, torpor, altitude, and migration, although the selective forces involved in the evolution of these presumed adaptations are not always obvious. I suggest that BMR constitutes the minimum level required for maintenance, and that variation in this minimum level reflects the fitness costs and benefits in terms of ability to respond to selective agents like predators, implying that an elevated level of BMR is a cost of wariness towards predators. This hypothesis predicts a positive relationship between BMR and measures of risk taking such as flight initiation distance (FID) of individuals approached by a potential predator. Consistent with this suggestion, I show in a comparative analysis of 76 bird species that species with higher BMR for their body mass have longer FID when approached by a potential predator. This effect was independent of potentially confounding variables and similarity among species due to common phylogenetic descent. These results imply that BMR is positively related to risk‐taking behaviour, and that predation constitutes a neglected factor in the evolution of BMR.  相似文献   

7.
Flight initiation distance (FID) is the distance at which an individual animal takes flight when approached by a human. This behavioural measure of risk‐taking reflects the risk of being captured by real predators, and it correlates with a range of life history traits, as expected if flight distance optimizes risk of predation. Given that FID provides information on risk of predation, we should expect that physiological and morphological mechanisms that facilitate flight and escape predict interspecific variation in flight distance. Haematocrit is a measure of packed red blood cell volume and as such indicates the oxygen transport ability and hence the flight muscle contracting reaction of an individual. Therefore, we predicted that species with short flight distances, that allow close proximity between a potential prey individual and a predator, would have high haematocrit. Furthermore, we predicted that species with large wing areas and hence relatively low costs of flight and species with large aspect ratios and hence high manoeuvrability would have evolved long flight speed. Consistent with these predictions, we found in a sample of 63 species of birds that species with long flight distances for their body size had low levels of haematocrit and large wing areas and aspect ratios. These findings provide evidence consistent with the evolution of risk‐taking behaviour being underpinned by physiological and morphological mechanisms that facilitate escape from predators and add to our understanding of predator–prey coevolution.  相似文献   

8.
Antipredator behavior and risk assessment of many species are affected by the presence of humans and their activities. Previous studies have largely been conducted on birds and mammals and relatively less is known about human impacts on reptiles. We used flight initiation distance (FID) as a measure of risk assessment in inland blue‐tailed skinks (Emoia impar) and tested the direct and indirect effects of humans on risk assessment. We first examined the effects of varying levels and types of human disturbance and activity on skink FID. We found that skinks flushed at significantly longer distances in areas with the least human activity. We then tested the degree to which skinks are able to discriminate different numbers of humans by comparing FID across three different types of approaches. Skinks did not significantly differentiate between a single approacher and a single approacher coming from a group of two other people, but did flush at greater distances when approached by three people simultaneously. Although skinks are not directly harvested or harassed by humans, they have refined human discrimination abilities. Overall, skinks habituate to a variety of human activities and perceive a larger threat when the number of human approachers is greater.  相似文献   

9.
During encounters with predators, prey must balance the degreeof risk against the loss of fitness-enhancing benefits suchas feeding and social activities. Most studies of tradeoffsbetween risk and cost of escaping have measured flight initiationdistance and time to emerge from refuge, for which theory providesrobustly supported predictions. Tradeoffs involving other aspectsof encounters, including distance fled and time between escapeand return to a food source, have received little theoreticalor empirical attention. By adapting models of flight initiationdistance and time between entry into refuge and emergence, wepredict effects of predation risk and cost on distance fledand time to return to a source of benefit after fleeing. Actingas simulated predators that approached at a fixed speed, weconducted an experimental field study to test the hypothesesthat flight initiation distance, distance fled, and time toreturn to food by Balearic lizards (Podarcis lilfordi) decreasewith the presence and amount of insect food. Predictions ofthe models were strongly supported, including those for distancefled and return time, but predictions for other cost factorsand predation risk factors remain to be tested.  相似文献   

10.
Flight initiation distance (FID) is the distance between a potential threat and the point at which a potential prey flees. Animals may modify their FID to compensate for increased risk generated by external/extrinsic factors such as habitat type, visibility, group size, time of year, predator‐approach velocity, and distance to burrow, as well as internal/intrinsic factors such as physical condition, body temperature, crypsis, and morphological antipredator defenses. The intrinsic speed at which an animal can escape a predator is a factor that should influence FID. We studied the relationship between an individual's intrinsic escape speed and FID in yellow‐bellied marmots (Marmota flaviventris) to determine whether marmots compensated for slower escape speeds by fleeing at greater distances. We found no evidence of risk compensation. Rather, we found that slower marmots tolerated closer approaches. This behavioral syndrome may be explained by a coevolution of FID and escape speed in determining an individual's antipredator behavior, an idea upon which we expand.  相似文献   

11.
Island tameness (reduced escape behaviour on islands where prey have experienced prolonged relaxation of predation pressure) is known in several taxa, although the relationships between recent predation pressure and escape on islands are poorly known. We investigated escape by numerous populations exposed to differing predation pressure of two sister species of Podarcis lizards in the Balearic Islands. Our main findings are that flight initiation distance was greater in Podarcis pityusensis than Podarcis lilfordi and increased as predation pressure increased in P. pityusensis. Island tameness led to extinction of P. lilfordi on Menorca and Mallorca following anthropogenic introduction of predators; this species is extant only on nearby islets. The lack of relationship between recent predation pressure and flight initiation distance in P. lilfordi indicates that the historically acquired deficit in the ability to adjust escape behaviour to predation pressure still exists. Podarcis pityusensis, which was exposed to greater natural predation pressure before human introduction of predators, survives on Ibiza and Formentera, as well as on islets. Retention of the ability to respond to predation pressure is consistent with our finding that flight initiation distance increases as predation pressure increases among current populations. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

12.
13.
Synopsis The risk to a prey individual in an encounter with a predator increases as the distance to protective cover increases. Prey should therefore initiate their flight to cover at longer distances from an approaching predator (i.e., sooner) and/or flee at greater velocities, as the distance to cover increases. These predictions were tested with an African cichlid fish, Melanochromis chipokae presented with a looming stimulus simulating an attacking predator. The fish varied their flight initiation distance as predicted, but there was no significant effect of distance-to-cover on escape velocity. Nevertheless, the cichlids appeared to choose a combination of flight initiation distance and escape velocity which ensured they reached cover with a constant temporal margin of safety.  相似文献   

14.
The wind-sensitive cercal system of Orthopteroid insects that mediates the detection of the approach of a predator is a very sensitive sensory system. It has been intensively analysed from a behavioural and neurobiological point of view, and constitutes a classical model system in neuroethology. The escape behaviour is triggered in orthopteroids by the detection of air-currents produced by approaching objects, allowing these insects to keep away from potential dangers. Nevertheless, escape behaviour has not been studied in terms of success. Moreover, an attacking predator is more than “air movement”, it is also a visible moving entity. The sensory basis of predator detection is thus probably more complex than the perception of air movement by the cerci. We have used a piston mimicking an attacking running predator for a quantitative evaluation of the escape behaviour of wood crickets Nemobius sylvestris. The movement of the piston not only generates air movement, but it can be seen by the insect and can touch it as a natural predator. This procedure allowed us to study the escape behaviour in terms of detection and also in terms of success. Our results showed that 5-52% of crickets that detected the piston thrust were indeed touched. Crickets escaped to stimulation from behind better than to a stimulation from the front, even though they detected the approaching object similarly in both cases. After cerci ablation, 48% crickets were still able to detect a piston approaching from behind (compared with 79% of detection in intact insects) and 24% crickets escaped successfully (compared with 62% in the case of intact insects). So, cerci play a major role in the detection of an approaching object but other mechanoreceptors or sensory modalities are implicated in this detection. It is not possible to assure that other sensory modalities participate (in the case of intact animals) in the behaviour; rather, than in the absence of cerci other sensory modalities can partially mediate the behaviour. Nevertheless, neither antennae nor eyes seem to be used for detecting approaching objects, as their inactivation did not reduce their detection and escape abilities in the presence of cerci.  相似文献   

15.
One of Darwin''s most widely known conjectures is that prey are tame on remote islands, where mammalian predators are absent. Many species appear to permit close approach on such islands, but no comparative studies have demonstrated reduced wariness quantified as flight initiation distance (FID; i.e. predator–prey distance when the prey begins to flee) in comparison with mainland relatives. We used the phylogenetic comparative method to assess influence of distance from the mainland and island area on FID of 66 lizard species. Because body size and predator approach speed affect predation risk, we included these as independent variables. Multiple regression showed that FID decreases as distance from mainland increases and is shorter in island than mainland populations. Although FID increased as area increased in some models, collinearity made it difficult to separate effects of area from distance and island occupancy. FID increases as SVL increases and approach speed increases; these effects are statistically independent of effects of distance to mainland and island occupancy. Ordinary least-squares models fit the data better than phylogenetic regressions, indicating little or no phylogenetic signal in residual FID after accounting for the independent variables. Our results demonstrate that island tameness is a real phenomenon in lizards.  相似文献   

16.
Sexual selection is a powerful evolutionary mechanism that has shaped the physiology, behaviour and morphology of the sexes to the extent that it can reduce viability while promoting traits that enhance reproductive success. Predation is one of the underlying mechanisms accounting for viability costs of sexual displays. Therefore, we should expect that individuals of the two sexes adjust their anti-predator behaviour in response to changes in predation risk. We conducted a meta-analysis of 28 studies (42 species) of sex differences in risk-taking behaviour in lizards and tested whether these differences could be explained by sexual dichromatism, by sexual size dimorphism or by latitude. Latitude was the best predictor of the interspecific heterogeneity in sex-specific behaviour. Males did not change their escape behaviour with latitude, whereas females had increasingly reduced wariness at higher latitudes. We hypothesize that this sex difference in risk-taking behaviour is linked to sex-specific environmental constraints that more strongly affect the reproductive effort of females than males. This novel latitudinal effect on sex-specific anti-predator behaviour has important implications for responses to climate change and for the relative roles of natural and sexual selection in different species.  相似文献   

17.
Flight initiation distance describes the distance at which an animal flees during the approach of a predator. This distance presumably reflects the tradeoff between the benefits of fleeing versus the benefits of remaining stationary. Throughout ontogeny, the costs and benefits of flight may change substantially due to growth-related changes in sprint speed; thus ontogenetic variation in flight initiation distance may be substantial. If escape velocity is essential for surviving predator encounters, then juveniles should either tolerate short flight initiation distances and rely on crypsis, or should have high flight initiation distances to remain far away from their predators. We examined this hypothesis in a small, short-lived lizard (Sceloporus woodi). Flight initiation distance and escape velocity were recorded on an ontogenetic series of lizards in the field. Maximal running velocity was also quantified in a laboratory raceway to establish if escape velocities in the field compared with maximal velocities as measured in the lab. Finally a subset of individuals was used to quantify how muscle and limb size scale with body size throughout ontogeny. Flight initiation distance increased with body size; larger animals had higher flight initiation distances. Small lizards had short flight initiation distances and remained immobile longer, thus relying on crypsis for concealment. Escape velocity in the field did not vary with body size, yet maximum velocity in the lab did increase with size. Hind limb morphology scaled isometrically with body size. Isometric scaling of the hind limb elements and its musculature, coupled with similarities in sprint and escape velocity across ontogeny, demonstrate that smaller S. woodi must rely on crypsis to avoid predator encounters, whereas adults alter their behavior via larger flight initiation distance and lower (presumably less expensive) escape velocities.  相似文献   

18.
In predator-prey encounters, many factors influence risk perceptionby prey and their decision to flee. Previous studies indicatethat prey take flight at longer distances when they detect predatorsat longer distances and when the predator's behavior indicatesthe increased likelihood of attack. We examined the flight decisionsof Columbian black-tailed deer (Odocoileus hemionus columbianus)using an approaching human whose speed, directness of approach,directness of gaze, and simulated gun carrying varied. Deerfled at greater distances when approached more quickly and directly,and there was a concave-down quadratic trend in the relationshipbetween the distances at which the predator began its approachand at which the deer became alert (alert distance [AD]), indicatingthat deer have a zone of awareness beyond which there is a delayin detecting an approaching predator. Time spent assessing theapproacher (assessment time) was shorter during faster approachesand was positively related with AD. Deer fled at longer distancesand had shorter assessment times when they were already alertto the predator at the initiation of approach. Males fled atshorter distances than females when approached during the gun-holdingcondition, and males had shorter assessment times than femaleswhen the approacher averted his gaze. Such sex differences inrisk assessment might reflect male motivation during the matingseason as well as exposure to human hunting. We suggest thatrisk assessment is affected the by the predator's behavior,the state of awareness of the prey, and the distance at whichthey detect the predator.  相似文献   

19.
Escape theory has been exceptionally successful in conceptualizing and accurately predicting effects of numerous factors that affect predation risk and explaining variation in flight initiation distance (FID; predator–prey distance when escape begins). Less explored is the relative orientation of an approaching predator, prey, and its eventual refuge. The relationship between an approaching threat and its refuge can be expressed as an angle we call the “interpath angle” or “Φ,” which describes the angle between the paths of predator and prey to the prey’s refuge and thus expresses the degree to which prey must run toward an approaching predator. In general, we might expect that prey would escape at greater distances if they must flee toward a predator to reach its burrow. The “race for life” model makes formal predictions about how Φ should affect FID. We evaluated the model by studying escape decisions in yellow-bellied marmots Marmota flaviventer, a species which flees to burrows. We found support for some of the model’s predictions, yet the relationship between Φ and FID was less clear. Marmots may not assess Φ in a continuous fashion; but we found that binning angle into 4 45° bins explained a similar amount of variation as models that analyzed angle continuously. Future studies of Φ, especially those that focus on how different species perceive relative orientation, will likely enhance our understanding of its importance in flight decisions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号