首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments.  相似文献   

12.
Obligate avian brood parasites show dramatic variation in the degree to which they are host specialists or host generalists. The screaming cowbird Molothrus rufoaxillaris is one of the most specialized brood parasites, using a single host, the bay-winged cowbird (Agelaioides badius) over most of its range. Coevolutionary theory predicts increasing host specificity the longer the parasite interacts with a particular avian community, as hosts evolve defences that the parasite cannot counteract. According to this view, host specificity can be maintained if screaming cowbirds avoid parasitizing potentially suitable hosts that have developed effective defences against parasitic females or eggs. Specialization may also be favoured, even in the absence of host defences, if the parasite's reproductive success in alternative hosts is lower than that in the main host. We experimentally tested these hypotheses using as alternative hosts two suitable but unparasitized species: house wrens (Troglodytes aedon) and chalk-browed mockingbirds (Mimus saturninus). We assessed host defences against parasitic females and eggs, and reproductive success of the parasite in current and alternative hosts. Alternative hosts did not discriminate against screaming cowbird females or eggs. Egg survival and hatching success were similarly high in current and alternative hosts, but the survival of parasitic chicks was significantly lower in alternative hosts. Our results indicate that screaming cowbirds have the potential to colonize novel hosts, but higher reproductive success in the current host may favour host fidelity.  相似文献   

13.
14.
15.
16.
17.
18.
19.

Background and Aims

Since the early 1990s, research on genetic variation of phenotypic plasticity has expanded and empirical research has emphasized the role of the environment on the expression of inbreeding depression. An emerging question is how these two evolutionary ecology mechanisms interact in novel environments. Interest in this area has grown with the need to understand the establishment of populations in response to climate change, and to human-assisted transport to novel environments.

Methods

We compare performance in the field of outcrossed (O) and inbred lines (S1, S2) from 20 maternal families from each of two native populations of Mimulus guttatus. The experiment was planted in California in each population''s home site, in the other populations''s home site, in a novel site within the native range of M. guttatus, and in a novel site within the non-native range in North America. The experiment included nearly 6500 individuals. Survival, sexual reproduction and above-ground biomass were examined in order to evaluate inbreeding depression, and stem diameter and plant height were examined in order to evaluate phenotypic plasticity.

Key Results

Across all field sites, approx. 36 % of plants survived to flowering. Inbreeding depression differed among sites and outcrossed offspring generally outperformed selfed offspring. However, in the native-novel site, self-progeny performed better or equally well as outcross progeny. Significant phenotypic plasticity and genetic variation in plasticity was detected in the two architectural traits measured. The absolute value of plasticity showed the most marked difference between home and non-native novel site or non-native-novel site. Evidence was detected for an interaction between inbreeding and plasticity for stem diameter.

Conclusions

The results demonstrate that during initial population establishment, both inbreeding depression and phenotypic plasticity vary among field sites, and may be an important response to environments outside a species'' currently occupied range. However, the interaction between inbreeding and plasticity may be limited and environment-dependent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号