首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gohli et al. (2013) report a positive relationship between genetic diversity and promiscuity across passerine birds, and suggest that female promiscuity acts as a form of balancing selection, maintaining differences in genetic variation across species. This is an interesting hypothesis, but the enormous variation in genetic diversity present within species is not taken into account in their analyses. This, combined with a small sample size at several levels, makes the relationship between genetic diversity and promiscuity very difficult to interpret. Demonstrating that species‐level differences in genetic diversity (if they occur at all) are affected by promiscuity would require a far more comprehensive study than is presently possible.  相似文献   

2.
Multiple mating is common in many species, but it is unclear whether multiple paternity enhances offspring genetic diversity or fitness. We conducted a survey on wild house mice (Mus musculus musculus), and we found that in 73 pregnant females, 29% of litters had multiple sires, which is remarkably similar to the 23–26% found in feral populations of Mus musculus domesticus in the USA and Australia, respectively. The question is: How has selection maintained multiple mating in these subspecies since the evolutionary divergence, ca. 2800–6000 years ago? We found no evidence that multiple paternity enhanced females’ litter size, contrary to the fertility assurance or genetic benefits hypotheses. Multiple paternity was associated with reduced mean and variance in offspring body mass, which suggests that females allocate fewer resources or that there is increased intrauterine conflict in multiple-versus single-sired litters. We found increased allelic diversity (though not heterozygosity) in multiple-sired litters, as predicted by the genetic diversity hypothesis. Finally, we found that the dams’ heterozygosity was correlated with the mean heterozygosity of their offspring in single-and multiple-sired litters, suggesting that outbred, heterozygous females were more likely to avoid inbreeding than inbred, homozygous females. Future studies are needed to examine how increased genetic diversity of litters and smaller mean (and variance) offspring body mass associated with multiple paternity affect offspring fitness.  相似文献   

3.
张婷  祝茜 《兽类学报》2011,31(3):219-225
本文从25 份斑海豹样本中获得141 bp 片段,发现21 个变异位点,定义了12 个MHC-DQB 等位基因,氨基酸变异率为25.5% 。等位基因之间的遗传距离范围是0. 0071 ~ 0.1064,平均值为0.0577,不同等位基因之间的碱基差异是1 ~ 15 bp,平均差异数为8 bp。与其他鳍足类动物对比后发现,斑海豹MHC-DQB 表现出较丰富的多态性。非同义替换率明显高于同义替换率,由此造成的氨基酸替换集中在肽结合位点PBR 附近,表明DQB 基因受到强烈的平衡选择作用。11 个样本出现多于两条等位基因的情况,推测存在基因重复现象。  相似文献   

4.
5.
MHC及其在种群遗传学和保护遗传学中的应用   总被引:12,自引:1,他引:12  
杨光  陈旭衍  任文华  严洁 《遗传》2002,24(6):712-714
主要组织相容性复合体(major histocompatibility complex,MHC)是脊椎动物体内与免疫应答调节密切相关的一个基因家族,是基因组中多态性最丰富的区域。通过MHC的遗传变异分析可以提供物种的遗传多样性水平、进化历史和种群动态,以及种群遗传结构等信息,并在濒危物种饲养繁殖种群的遗传管理中有重要应用。 MHC and Its Application in the Population and Conservation Genetics YANG Guang,CHEN Xu-yan,REN Wen-hua,YAN Jie Institute of Genetic Resources,Nanjing Normal University,Nanjing 210097,China Abstract:The major histocompatibility complex (MHC),with the highest genetic polymorphism,is a cluster of genes involved in immune response regulation in the vertebrates.MHC can provide information such as population genetic diversity,evolutionary history and population dynamics,and population genetic structure etc.It can also be applied in the captive breeding programme for endangered vertebrate species. Key words:major histocompatibility complex (MHC);genetic diversity,population viability;population genetic structure;captive breeding  相似文献   

6.
Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short‐ and long‐term persistence of populations and species. However, the relative spatio‐temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23‐year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool.  相似文献   

7.
The major histocompatibility complex (MHC) is one of the most diverse regions of the mammalian genome. Diversity in MHC genes is integral to their function in the immune system, and while pathogens play a key role in shaping this diversity, the contribution of other selective forces remains unclear. The controlled breeding of cattle offers an excellent model for the identification and exploration of these forces. We characterized the MHC class I genes present in a sample of Canadian Holstein A.I. bulls and compared the results with those obtained in an earlier study. No evidence for a reduction in MHC diversity over 20 years was observed, but the relative frequency of some haplotypes had changed: the formerly rare A12 (w12B) haplotype had become the most common, together with A15, while A19, which dominated the earlier sample, had significantly reduced in frequency. Only 7% of bulls in the current study were MHC homozygous compared with the 14% expected under Hardy-Weinberg. To identify the selective forces at work, a gene substitution model was used to calculate the effects of MHC on selection traits using estimated breeding values for each bull. Significant associations between MHC and production, disease and fertility traits were identified, suggesting that MHC diversity is not merely shaped by disease in this controlled breeding system. The decrease in a common haplotype, the reduced number of homozygous bulls and the associations with disease and production traits together indicate that MHC diversity in dairy cattle is maintained by heterozygote advantage.  相似文献   

8.
家禽主要组织相容性复合体的研究进展   总被引:5,自引:2,他引:5  
侯卓成  杨宁 《遗传》2002,24(1):72-76
随着家禽基因组计划的开展,对家禽的主要组织相容性复合体(MHC)的研究取得了较大的进展。关于家禽MHC的各部分基因研究正在逐步深入,并且完成了MHC部分测序和染色体定位工作。 本文介绍近些年来对家禽MHC的基因结构和作用、与抗体的作用以及相关的基因组研究所取得的进展。人、小鼠及其他动物的相关研究结果将对家禽MHC研究的发展产生重要的影响。 Abstract:As the development of poultry genome project,it has been acquired many advances in the study of poultry MHC.At present,we have achieved some MHC sequences 、 locations of MHC on chromosome and some MHC gene functions.This article give a detailed introduction about gene structure of poultry MHC and its role in immune reaction、relation with antibody and advances in poultry genome about MHC.With the development of related research,how to use the result of the study more efficiently become more and more important to the poultry MHC study.  相似文献   

9.
The Tasmanian devil (Sarcophilus harrisii) is at risk of extinction owing to the emergence of a contagious cancer known as devil facial tumour disease (DFTD). The emergence and spread of DFTD has been linked to low genetic diversity in the major histocompatibility complex (MHC). We examined MHC diversity in historical and ancient devils to determine whether loss of diversity is recent or predates European settlement in Australia. Our results reveal no additional diversity in historical Tasmanian samples. Mainland devils had common modern variants plus six new variants that are highly similar to existing alleles. We conclude that low MHC diversity has been a feature of devil populations since at least the Mid-Holocene and could explain their tumultuous history of population crashes.  相似文献   

10.
Genetic rescue can reduce inbreeding depression and increase fitness of small populations, even when the donor populations are highly inbred. In a recent experiment involving two inbred island populations of the New Zealand South Island robin, Petroica australis, reciprocal translocations improved microsatellite diversity and individual fitness. While microsatellite loci may reflect patterns of genome‐wide diversity, they generally do not indicate the specific genetic regions responsible for increased fitness. We tested the effectiveness of this reciprocal translocation for rescuing diversity of two immunogenetic regions: Toll‐like receptor (TLR) and major histocompatibility complex (MHC) genes. We found that the relatively small number of migrants (seven and ten per island) effectively brought the characteristic TLR gene diversity of each source population into the recipient population. However, when migrants transmitted TLR alleles that were already present at high frequency in the recipient population, it was possible for offspring of mixed heritage to have decreased gene diversity compared to recipient population diversity prior to translocation. In contrast to TLRs, we did not observe substantial changes in MHC allelic diversity following translocation, with limited evidence of a decrease in differentiation, perhaps because most MHC alleles were observed at both sites prior to the translocation. Overall, we conclude that small numbers of migrants may successfully restore the diversity of immunogenetic loci with few alleles, but that translocating larger numbers of animals would provide additional opportunity for the genetic rescue of highly polymorphic immunity regions, such as the MHC, even when the source population is inbred.  相似文献   

11.
12.
A study based on 14 STRs was conducted to understand intergenerational genetic changes that have occurred within the California National Primate Research Center's (CNPRC) regular specific pathogen‐free (SPF) and super‐SPF captive rhesus macaque populations relative to their conventional founders. Intergenerational genetic drift has caused age cohorts of each study population, especially within the conventional population, to become increasingly differentiated from each other and from their founders. Although there is still only minimal stratification between the conventional population and either of the two SPF populations, separate derivation of the regular and super‐SPF animals from their conventional founders has caused the two SPF populations to remain marginally different from each other. The regular SPF and, especially, the super‐SPF populations have been influenced by the effects of differential ancestry, sampling, and lost rare alleles, causing a substantial degree of genetic divergence between these subpopulations. The country of origin of founders is the principal determinant of the MHC haplotype composition of the SPF stocks at the CNPRC. Selection of SPF colony breeders bearing desired genotypes of Mamu‐A*01 or ‐B*01 has not affected the overall genetic heterogeneity of the conventional and the SPF research stocks. Because misclassifying the ancestry of research stocks can undermine experimental outcomes by excluding animals with regional‐specific genotypes or phenotypes of importance, understanding founder/descendent genetic relationships is crucial for investigating candidate genes with distinct geographic origins. Together with demographic management, population genetic assessments of SPF colonies can curtail excessive phenotypic variation among the study stocks and facilitate successful production goals. Am. J. Primatol. 72:587–599, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
A classical paradigm in population genetics is that homozygosity or inbreeding affects individual fitness through increased disease susceptibility and mortality, and diminished breeding success. Using data from an insular population of mouflon (Ovis aries) founded by a single pair of individuals, we compare embryo number of ewes with different levels of inbreeding. Contrary to expectations, ewes with the highest levels of homozygosity showed the largest number of embryos. Using two different statistical approaches, we showed that this relationship is probably caused by heterozygosity at specific genes. The genetics of embryo number coupled with cyclic dynamics could play a central role in promoting genetic variation in this population.  相似文献   

14.
15.
16.
The hispid cotton rat, Sigmodon hispidus, is a common rodent widely distributed across the southern USA and south into South America. To characterize major histocompatibility complex (MHC) diversity in this species and to elucidate large-scale patterns of genetic partitioning, we examined MHC genetic variability within and among 13 localities, including a disjunct population in Arizona and a population from Costa Rica that may represent an undescribed species. We also tested the hypothesis that populations within the USA are at equilibrium with regard to gene flow and genetic drift, resulting in isolation-by-distance. Using single-strand conformation polymorphism (SSCP) analysis we identified 25 alleles from 246 individuals. Gene diversity within populations ranged from 0.000 to 0.908. Analysis of molecular variance (AMOVA) revealed that 83.7% of observed variation was accounted for by within-population diversity and 16.3% was accounted for by among-population divergence. The disjunct population in Arizona was fixed for a single allele. The Costa Rican population was quite divergent based on allelic composition and was the only population with unique alleles. Within the main portion of the geographical distribution of S. hispidus in the USA there was considerable divergence among some populations; however, there was no significant pattern of isolation-by-distance overall (P = 0.090). Based on the significant divergence of the only sampled population to its east, the Mississippi River appears to represent a substantial barrier to gene flow.  相似文献   

17.
Sexual selection hypotheses stipulate that the major histocompatibility complex genes (MHC) constitute a key molecular underpinning for mate choice in vertebrates. The last four decades saw growing empirical literature on the role of MHC diversity and dissimilarity in mate choice for a wide range of vertebrate animals, but with mixed support for its significance in natural populations. Using formal phylogenetic meta‐analysis and meta‐regression techniques, we quantitatively review the existing literature on MHC‐dependent mating preferences in nonhuman vertebrates with a focus on the role of MHC diversity and dissimilarity. Overall, we found small, statistically nonsignificant, average effect sizes for both diversity‐ and dissimilarity‐based mate choice (= 0.113 and 0.064, respectively). Importantly, however, meta‐regression models revealed statistically significant support regarding female choice for diversity, and choice for dissimilarity (regardless of choosy sex) only when dissimilarity is characterized across multiple loci. Little difference was found among vertebrate taxa; however, the lack of statistical power meant statistically significant effects were limited to some taxa. We found little sign of publication bias; thus, our results are likely to be robust. In light of our quantitative assessment, methodological improvements and fruitful future avenues of research are highlighted.  相似文献   

18.
The Common Hamster (Cricetus cricetus L.)has suffered from changes in agriculturalpractices. In some Western European countriesthe populations have become so small andscattered that they are threatened withextinction. We studied the genetic diversity ofmitochondrial and major histoincompatibilitycomplex (MHC) loci in the few animals left inthe South of the Netherlands and in threeanimals from the Alsace region in France, andcompared it to the diversity in Dutch animalsin the past (samples taken from stuffed animalsin museum collections dating back to the period1924–1956) and in a large present-daypopulation from Czech Republic. For themitochondrial cytochrome b gene, SNP mappingdemonstrated a total of nine alleles among 14Czech samples, of which one (possibly two) waspresent in the Dutch museum samples, and onlyone in the current Dutch animals. For the MHCgenes, DQA exon 2 and 3 showed no variation,while 14 different alleles were found at DRBexon 2. The Czech population contained 13different alleles in 15 animals sampled, andmost animals were heterozygous (Ho = 0.80,He = 0.91). Therefore, the solitary livingHamster maintains, in nature, a large diversityat this MHC locus. The Dutch museum samplescontained eight different alleles in 20 samples, and they were slightly less heterozygous (Ho = 0.60, He = 0.75). All but one ofthese alleles were also found in the Czechsamples. In contrast, the present Dutch andFrench animals (a total of 16 samples)contained only one of these alleles, and allanimals were genetically identical andhomozygous. We conclude that the remaininganimals have lost all diversity at this MHClocus. This is probably the result of a severebottleneck, which may have been quite severe,reducing diversity in many loci. In addition,the remaining Dutch animals are partly derivedfrom one family. These animals are now part ofa breeding program. Options for restocking thegenetic diversity are discussed.  相似文献   

19.
Scant information is available about the molecular basis of multiple HLA class I antigen-processing machinery defects in malignant cells, although this information contributes to our understanding of the molecular immunoescape mechanisms utilized by tumor cells and may suggest strategies to counteract them. In the present study we reveal a combination of IFN-γ-irreversible structural and epigenetic defects in HLA class I antigen-processing machinery in a recurrent melanoma metastasis after immunotherapy. These defects include loss of tapasin and one HLA haplotype as well as selective silencing of HLA-A3 gene responsiveness to IFN-γ. Tapasin loss is caused by a germ-line frameshift mutation in exon 3 (TAPBP684delA) along with a somatic loss of the other gene copy. Selective silencing of HLA-A3 gene and its IFN-γ responsiveness is associated with promoter CpG methylation nearby site-α and TATA box, reversible after DNA methyltransferase 1 depletion. This treatment combined with tapasin reconstitution and IFN-γ stimulation restored the highest level of HLA class I expression and its ability to elicit cytotoxic T cell responses. These results represent a novel tumor immune evasion mechanism through impairing multiple components at various levels in the HLA class I antigen presentation pathway. These findings may suggest a rational design of combinatorial cancer immunotherapy harnessing DNA demethylation and IFN-γ response.  相似文献   

20.
Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号