首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiological constraints in insects are related to several large-scale processes such as species distribution and thermal adaptation. Here, we fill an important gap in ecophysiology knowledge by accessing the relationship between temperature and embrionary development time in four dragonfly species. We evaluated two questions (1) what is the effect of temperature on the development time of Odonata eggs, and (2) considering a degree-day relationship, could a simple linear model describe the dependence of embrionary development time on temperature or it is better described by a more complex non-linear relation. Egg development time of Erythrodiplax fusca (Rambur), Micrathyria hesperis Ris, Perithemis mooma Kirby, and Miathyria simplex (Rambur) (Odonata: Libellulidae) were evaluated. We put the eggs at different temperatures (15, 20, 25, and 30°C) and counted the number of hatched larvae daily. A nonlinear response of the development to the temperature was found, differing from the expected pattern for standard degree-day analysis. Furthermore, we observed that there is a similar process in the development time and hatching synchronization between species, with all species presenting faster egg development at high temperatures. Species-specific differences are more evident at lower temperatures (15°C), with no egg development in M. simplex. Only E. fusca was relatively insensitive to temperature changes with similar hatching rates in all treatments.  相似文献   

2.
The consumption rate of an ectothermic predator is highly temperature-dependent and is a key driver of pest-predator population interactions. Not only average daily temperature, but also diurnal temperature variations may affect prey consumption and life history traits of ectotherms. In the present study, we evaluated the impact of temperature alternations on body size, predation capacity and oviposition rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) when presented with eggs of their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). For both predators, mean daily temperature as well as temperature alternation had a substantial impact on the number of prey consumed. At lower average temperatures, more eggs were killed under an alternating temperature regime (20 °C/5 °C and 25 °C/10 °C) than at the corresponding mean constant temperatures (15 and 20 °C). At higher average temperatures (>25 °C), however, the opposite was observed with higher numbers of prey killed at constant temperatures than at alternating temperatures. At 25 °C, temperature variation had no effect on the predation capacity. A similar trend as for the predation rates was observed for the oviposition rates of the phytoseiids. Body size of N. californicus was affected both by average daily temperature and temperature variation, with smaller adult females emerging at alternating temperatures than at constant temperatures, whereas for P. persimilis, temperature variation had no impact on its body size. Our results demonstrate that temperature variations are likely to affect biological control of T. urticae by the studied phytoseiid predators.  相似文献   

3.
This paper investigates the effect of temperature on nitrogen and carbon removal by aerobic granules from landfill leachate with a high ammonium concentration and low concentration of biodegradable organics. The study was conducted in three stages; firstly the operating temperature of the batch reactor with aerobic granules was maintained at 29 °C, then at 25 °C, and finally at 20 °C. It was found that a gradual decrease in operational temperature allowed the nitrogen-converting community in the granules to acclimate, ensuring efficient nitrification even at ambient temperature (20 °C). Ammonium was fully removed from leachate regardless of the temperature, but higher operational temperatures resulted in higher ammonium removal rates [up to 44.2 mg/(L h) at 29 °C]. Lowering the operational temperature from 29 to 20 °C decreased nitrite accumulation in the GSBR cycle. The highest efficiency of total nitrogen removal was achieved at 25 °C (36.8 ± 10.9 %). The COD removal efficiency did not exceed 50 %. Granules constituted 77, 80 and 83 % of the biomass at 29, 25 and 20 °C, respectively. Ammonium was oxidized by both aerobic and anaerobic ammonium-oxidizing bacteria. Accumulibacter sp., Thauera sp., cultured Tetrasphaera PAO and AzoarcusThauera cluster occurred in granules independent of the temperature. Lower temperatures favored the occurrence of denitrifiers of Zooglea lineage (not Z. resiniphila), bacteria related to Comamonadaceae, Curvibacter sp., Azoarcus cluster, Rhodobacter sp., Roseobacter sp. and Acidovorax spp. At lower temperatures, the increased abundance of denitrifiers compensated for the lowered enzymatic activity of the biomass and ensured that nitrogen removal at 20 °C was similar to that at 25 °C and significantly higher than removal at 29 °C.  相似文献   

4.
The response of effective quantum yield of photosystem 2 (ΔF/Fm’) to temperature was investigated under field conditions (1 950 m a.s.l.) in three alpine plant species with contrasting leaf temperature climates. The in situ temperature response did not follow an optimum curve but under saturating irradiances [PPFD >800 µìmol(photon) m?2s?1] highest ΔF/Fm’ occurred at leaf temperatures below 10°C. This was comparable to the temperature response of antarctic vascular plants. Leaf temperatures between 0 and 15°C were the most frequently (41 to 56%) experienced by the investigated species. At these temperatures, ΔF/Fm’ was highest in all species (data from all irradiation classes included) but the species differed in the temperature at which ΔF/Fm’ dropped below 50% (Soldanella pusilla >20°C, Loiseleuria procumbens >25°C, and Saxifraga paniculata >40°C). The in situ response of ΔF/Fm’ showed significantly higher ΔF/Fm’ values at saturating PPFD for the species growing in full sunlight (S. paniculata and L. procumbens) than for S. pusilla growing under more moderate PPFD. The effect of increasing PPFD on ΔF/Fm’, for a given leaf temperature, was most pronounced in S. pusilla. Despite the broad diurnal leaf temperature amplitude of alpine environments, only in S. paniculata did saturating PPFD occur over a broad range of leaf temperatures (43 K). In the other two species it was half of that (around 20 K). This indicates that the setting of environmental scenarios (leaf temperature×PPFD) in laboratory experiments often likely exceeds the actual environmental demand in the field.  相似文献   

5.
Photosynthetic parameters including net photosynthetic rate (PN), transpiration rate (E), water-use efficiency (WUE), and stomatal conductance (gs) were studied in indoor C3 plants Philodendron domesticum (Pd), Dracaena fragans (Df), Peperomia obtussifolia (Po), Chlorophytum comosum (Cc), and in a CAM plant, Sansevieria trifasciata (St), exposed to various low temperatures (0, 5, 10, 15, 20, and 25°C). All studied plants survived up to 0°C, but only St and Cc endured, while other plants wilted, when the temperature increased back to room temperature (25°C). The PN declined rapidly with the decrease of temperature in all studied plants. St showed the maximum PN of 11.9 μmol m?2 s?1 at 25°C followed by Cc, Po, Pd, and Df. E also followed a trend almost similar to that of PN. St showed minimum E (0.1 mmol m?2 s?1) as compared to other studied C3 plants at 25°C. The E decreased up to ≈4-fold at 5 and 0°C. Furthermore, a considerable decline in WUE was observed under cold stress in all C3 plants, while St showed maximum WUE. Similarly, the gs also declined gradually with the decrease in the temperature in all plants. Among C3 plants, Pd and Po showed the maximum gs of 0.07 mol m?2 s?1 at 25°C followed by Df and Cc. However, St showed the minimum gs that further decreased up to ~4-fold at 0°C. In addition, the content of photosynthetic pigments [chlorophyll a, b, (a+b), and carotenoids] was varying in all studied plants at 0°C. Our findings clearly indicated the best photosynthetic potential of St compared to other studied plants. This species might be recommended for improving air quality in high-altitude closed environments.  相似文献   

6.
Chytridiomycosis, an amphibian disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an ideal system for studying the influence of temperature on host–pathogen relationships because both host and pathogen are ectothermic. Studies of Bd in culture suggest that optimal growth occurs between 17 and 23°C, and death of the fungus occurs above 29 or below 0°C. Amphibian immune systems, however, are also temperature dependent and often more effective at higher temperatures. We therefore hypothesized that pathogen load, probability of infection and mortality in Bd-exposed frogs would peak at a lower temperature than that at which Bd grows best in vitro. To test this, we conducted a study where Bd- and sham-exposed Northern cricket frogs (Acris crepitans) were incubated at six temperatures between 11 and 26°C. While probability of infection did not differ across temperatures, pathogen load and mortality were inversely related to temperature. Survival of infected hosts was greatest between 20 and 26°C, temperatures where Bd grows well in culture. These results demonstrate that the conditions under which a pathogen grows best in culture do not necessarily reflect patterns of pathogenicity, an important consideration for predicting the threat of this and other wildlife pathogens.  相似文献   

7.
Fopius arisanus (Sonan) is a solitary parasitoid of eggs and the first instar larvae of Tephritidae. Due to the occurrence of Ceratitis capitata (Wiedemann) in various regions and under several climatic conditions, this study aimed to evaluate the effect of different temperatures on the embryonic development (egg–adult) and determine thermal requirements and the number of annual generations F. arisanus on eggs of C. capitata. In the laboratory, eggs of C. capitata (24 h) were submitted to parasitism of F. arisanus during 6 h. Later, the eggs were placed in plastic containers (50 mL) (50 eggs/container) on a layer of artificial diet and packed in chambers at temperatures 15, 18, 20, 22, 25, 28, 30, and 32 ± 1°C, RH 70 ± 10%, and a photophase of 12 h. The largest number of offspring, emergence rate, and weight of adults of F. arisanus were observed at 25°C. The highest sex ratios (sr > 0.75) were recorded at 15 and 18°C, being statistically higher than the temperatures 20°C (0.65), 22°C (0.64), 25°C (0.65), 28°C (0.49), and 30°C (0.47). At 32°C, there was no embryonic development of F. arisanus. The egg–adult period was inversely proportional to temperature. Based on the development of the biological cycle (egg–adult), the temperature threshold (T t) was 10.3°C and thermal constant (K) of 488.34 degree-days, being the number of generations/year directly proportional to the temperature increase. The data show the ability of F. arisanus to adapt to different thermal conditions, which is important for biological control programs of C. capitata.  相似文献   

8.
A knowledge of the rate of oxygen consumption is very important for the evaluation of many physiological and ecological problems. Among the many factors affecting respiratory rate, water temperature and body size are particularly considered here. The modifying effects of body size may be expressed mathematically by the allometric formula: y=b · w a , where b represents the rate of O2 consumption of an individual whose weight is expressed in a chosen metrical weight unity (i. e. in grams, ounces, etc.), anda represents the decrease of metabolic rate during growth. InArenicola the exponent is not the same at all temperatures tested. In most cases it lies between 0.7 and 0.8, i. e., between a weight proportional respiratory rate and a surface proportional one. Minimum values fora were found in experiments conducted in summer at 20° C and in spring at 15° C. They characterize an optimum efficiency of metabolism at these temperatures. Determinations of b demonstrated that metabolic rate ofArenicola is significantly less affected in spring (10° to 20° C) and autumn (10° to 25° C) than is usually known from biological processes. However, the temperature coefficients above and below these temperature ranges are very high. Another break in the temperature-rate curve could be demonstrated below 5° C in spring.  相似文献   

9.
Two new species, Talaromyces heiheensis from rotten wood and T. mangshanicus isolated from soil, are illustrated and described as new to science in sections Trachyspermi and Talaromyces. The phylogenetic positions of the two new species inferred from the internal transcribed spacer, beta-tubulin, calmodulin and RNA polymerase II second largest subunit regions were carried out. Talaromyces heiheensis is phylogenetically closely related to T. albobiverticillius, T. rubrifaciens, T. solicola and T. erythromellis, and characterised by slow growth on Czapek yeast autolysate agar at 25 °C, orange conidia en masse on malt extract agar at 25 °C, biverticillate and terverticillate conidiophores, acerose phialides and subglobose to ellipsoidal, smooth-walled conidia. Talaromyces mangshanicus is related to T. kendrickii, T. qii and T. thailandensis, and characterised by slow-growing colonies with absent or sparse sporulation on CYA agar at 25 °C, conidia en masse greyish purple, purplish red soluble pigment on yeast extract agar (YES) at 25 °C, biverticillate conidiophores, ampulliform phialides and subglobose to ellipsoidal conidia with echinulate walls. They are distinguished from the known species in culture characteristics on four standard media, microscopic features and sequence data.  相似文献   

10.
Pomacea canaliculata is a South American freshwater snail considered as one of the world’s worst invasive alien species. A temperature of around 25 °C has usually been considered to be optimal for rearing P. canaliculata. Nevertheless, snails have not been reared under a wide range of temperatures to reveal the optimum for performance in terms of population increase. We investigated the effect of temperature on growth, survival and reproduction, estimating demographic parameters for P. canaliculata in the wide range of temperatures at which these snails are active (15–35 °C). No reproductive activity was evidenced for the snails reared at 15 °C, probably explained by the small sizes attained at this temperature. Temperatures above 25 °C did not promote a significant acceleration in growth so higher temperatures will not result in a reduction in time to reach maturity. In fact, snails from 25 and 30 °C began reproduction at the same age. We report here for the first time a detrimental effect of high temperatures that provoked a significant decrease in the contribution of snails to the next generation: the viability of eggs from the snails reared at 30 °C was very low and the snails exposed to a constant water temperature of 35 °C were unable to produce eggs. Our findings reveal a new environmental constraint that could be a determinant of the range limits of this species in invaded regions, especially during the coming decades, anticipating the scenario predicted from global warming.  相似文献   

11.
The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities.  相似文献   

12.
We developed a rapid mutagenesis method based on a modification of the QuikChange® system (Stratagene) to systemically replace endogenous gene sequences with a unique similar size sequence tag. The modifications are as follows: 1: the length of the anchoring homologous sequences of both mutagenesis primers were increased to 16 – 22 bp to achieve melting temperatures greater than 80°C. 2: the final concentrations of both primers were increased to 5–10 ng/µl and the final concentration of template to 1–2 ng/µl. 3: the annealing temperature was adjusted when necessary from 52°C to 58°C. We generated 25 sequential mutants in the cloned espD gene (1.2 kb), which encodes an essential component of the type III secretion translocon required for the pathogenesis of enteropathogenic E. coli (EPEC) infection. Each mutation consisted of the replacement of 15 codons (45 bp) with 8 codons representing a 24 bp sequence containing three unique restriction endonuclease sites (KpnI/MfeI/SpeI) starting from the second codon. The insertion of the restriction endonuclease sites provides a convenient method for further insertions of purification and/or epitope tags into permissive domains. This method is rapid, site-directed and allows for the systematic creation of mutants evenly distributed throughout the entire gene of interest.  相似文献   

13.
The ants L. semenovi has been found to belong to species with endogenous-heterodynamic seasonal life cycles with the obligate diapause induced predominantly by factors internal for a colony, whereas external ecological factors (photoperiods and temperature) produce merely modifying effects by accelerating or delaying the diapause onset. The photoperiodic and temperature regulation of diapause induction in larvae and queens is shown. Under effect of short days and low temperature the periods of larval pupation and queen oviposition in a colony are shortened markedly, i.e., the diapause of larvae and queens occurs earlier. The daily rhythms of temperature 15/25°C and particularly 20/30°C as compared with constant temperatures 20 and 25°C that correspond to the mean circadian temperatures of the thermorhythm, inhibit manifestations of the short day effects by stimulating the non-diapause development and increasing duration of the seasonal development cycle of ant colonies. The L. semenovi photoperiodic reaction is quantitative, as development and pupation of larvae and egg-laying of queens cease sooner or later under both the short and the long days, but in the latter case significantly later. Thus L. semenovi is one more example among very rare ant species that are revealed to have the photoperiodic regulation of the colony development seasonal cycle.  相似文献   

14.
The coconut hispine beetle, Brontispa longissima (Gestro), supposedly originated from Papua New Guinea and Indonesia but has recently invaded Southeast and East Asian countries where it has been causing serious damage to Cocos nucifera L. This insect also occurs on the Southwest Islands off Kyushu Island in Japan. To evaluate the potential northward range expansion of this insect in Japan, we investigated its cold tolerance at 0, 5, and 10 °C (egg, larva, pupa, and adult), 13 °C (adult), and 15 °C (egg and hatched larva). At 15 °C, few eggs hatched, and the larvae that hatched died within a few days of hatching. At 13 °C, Ltime95 was estimated to be 23 days for adults, with the most cold-tolerant developmental stage at 10 °C. At all developmental stages, Ltime95 of B. longissima was estimated to be 19 days at 10 °C, 8 days at 5 °C, and 5 days at 0 °C, suggesting the cold tolerance of this beetle is very low. Considering average daily temperatures, it is unlikely that B. longissima can establish itself north of Amami-Oshima Island, located in the far south off the main island of Japan.  相似文献   

15.
The current study was undertaken in order to assess the risk that different ranaviruses might impose on European sheatfish aquaculture. As the European sheatfish virus (ESV) is a known pathogen causing losses in European sheatfish aquaculture, it was assumed that closely related exotic ranaviruses might also be able to infect European sheatfish and probably cause disease and mortality in this species. The differential susceptibility of European sheatfish (Silurus glanis) to various ranavirus isolates was assessed at two different temperatures (15°C and 25°C) in a recirculation system. Fish were infected experimentally with a panel of ranavirus isolates including ESV, European catfish virus (ECV), European catfish virus isolate 24 (ECV‐24), Epizootic haematopoietic necrosis virus (EHNV), Rana esculenta virus isolate Italy 282/ I02 (REV), short‐finned eel virus (SERV), Bohle iridovirus (BIV), guppy virus 6 (GV6), doctor fish virus (DFV) and Frog virus 3 (FV3). Significant mortalities were observed, as expected, in fish infected with ESV at 15°C (100%) as well as at 25°C (86/83%). Fish infected with ECV at 15°C showed no clinical signs of disease (8% mortality), whereas those fish infected at 25°C exhibited a cumulative mortality of 54%. Fatal disease was also induced by Italian isolate ECV‐24 at 25°C (81%). Virus isolates ESV, ECV and ECV‐24, generally the most genetically closely related viruses, were successfully isolated from dead fish by cell culture with subsequent identification by polymerase chain reaction (PCR) and sequence analysis. However, no mortality or clinical signs of disease were observed in the groups of sheatfish infected with the other ranaviruses investigated in the study, and none of those viruses were re‐isolated in cell culture or identified by PCR. It was concluded that European sheatfish are susceptible to infection with ESV, ECV and ECV‐24 under laboratory conditions, but not to infection with EHNV, REV, SERV, BIV, GV6, DFV or FV3. For ESV, the incubation period was shorter at 25°C compared to 15°C water temperature, but whereas all fish died after ESV infection at 15°C, some fish survived the infection at 25°C. Futhermore, the very young sheatfish were susceptible to ECV and ECV‐24 at 25°C, whereas there was no significant mortality in the group of older sheatfish challenged with ECV at 15°C. Therefore, the clinical characteristics of the disease seem to depend on the age of the fish as well as on the water temperature.  相似文献   

16.
The effects of reduced water potential (ψ) on seed germination at 25 and 15 °C in unprimed (UP) and primed (P) seeds of two cultivars of sweet sorghum (cv. Keller and cv. Makueni local), were analyzed through the hydrotime model. Six ψ (from 0 to ?1.0 MPa) in polyethylene glycol 6000 (PEG) solutions were used for the tests. Seeds were primed in 250 g/L PEG solution at 15 °C for 48 h. Decreasing ψ of imbibition solution reduced and delayed germination. At 15 °C seeds germinated less and slower than at 25 °C at any ψ. Seeds of cv. Makueni local exhibited a greater sensitivity to water stress in terms of germination percentage, than seeds of cv. Keller, but they were faster in germination. Osmopriming was beneficial for seed germination, both in terms of final percentage and rate, at any temperature and ψ. The hydrotime analysis revealed that predicted θ H constant was increased when temperature was reduced to 15 °C and at this temperature median base water potential [ψ b(50)] for germination was higher (less negative) than at 25 °C. Seed priming shifted ψ b(50) towards more negative values and reduced θ H requirements for germination. At 25 °C the two cultivars behaved similarly while at 15 °C cv. Keller exhibited a ψ b more negative but required a greater θ H to germinate, indicating a greater water-stress tolerance but a slower germination, than cv. Makueni local. The application of the model allows to identify water stress tolerant cultivars during germination, to include into breeding programs for the selection of well-performing cultivars under stress conditions.  相似文献   

17.
Abundance of 2 ixodid tick species, Ixodes (Exopalpiger) trianguliceps Birula, 1895 and Ixodes (Ixodes) persulcatus Schulze, 1930 was studied during 6 years, in 1998–2001 and 2003–2004, at a research station in Gomselga Village (central Karelia, Kondopoga District, 62°04′N, 33°55′E). New data on host species composition and ixodid tick abundance were obtained from 4 forest plots at different stages of reforestation (secondary succession) following felling that occurred 7–14, 12–19, 25–32, and 80–87 years ago. Individuals of I. persulcatus predominated and constituted 73% of the total ticks collected. The occurrence rates of different developmental stages were shown to fluctuate in the course of reforestation both in I. trianguliceps (larvae, 2.8–5.3; nymphs, 1.5–2.2; adults, 0–0.09) and in I. persulcatus (larvae, 4.3–10.6; nymphs, 0.6–4.2).  相似文献   

18.
Temperature influences the geographic range, physiology, and behavior of many ectothermic species, including the invasive lionfish Pterois sp. Thermal parameters were experimentally determined for wild-caught lionfish at different acclimation temperatures (13, 20, 25 and 32 °C). Preferences and avoidance were evaluated using a videographic shuttlebox system, while critical thermal methodology evaluated tolerance. The lionfish thermal niche was compared experimentally to two co-occurring reef fishes (graysby Cephalopholis cruentata and schoolmaster Lutjanus apodus) also acclimated to 25 °C. The physiologically optimal temperature for lionfish is likely 28.7 ± 1 °C. Lionfish behavioral thermoregulation was generally linked to acclimation history; tolerance and avoidance increased significantly at higher acclimation temperatures, but final preference did not. The tolerance polygon of lionfish shows a strong correlation between thermal limits and acclimation temperature, with the highest CTmax at 39.5 °C and the lowest CTmin at 9.5 °C. The tolerance range of invasive lionfish (24.61 °C) is narrower than those of native graysby (25.25 °C) and schoolmaster (26.87 °C), mostly because of lower thermal maxima in the former. Results show that lionfish display “acquired” thermal tolerance at higher and lower acclimation temperatures, but are no more eurythermal than other tropical fishes. Collectively, these results suggest that while lionfish range expansion in the western Atlantic is likely over the next century from rising winter sea temperatures due to climate change, the magnitude of poleward radiation of this invasive species is limited and will likely be equivalent to native tropical and subtropical fishes with similar thermal minima.  相似文献   

19.
Temperature is the main factor affecting the distribution of the sympatric Amazon fishes Paracheirodon axelrodi and Paracheirodon simulans. Both species are associated with flooded areas of the Negro river basin; P. axelrodi inhabits waters that do not exceed 30°C, and P. simulans lives at temperatures that can surpass 35°C. The present work aimed to describe the biochemical and physiological adjustments to temperature in those species. We determined the thermal tolerance polygon of species acclimated to four temperatures using critical thermal methodology. We also determined the chronic temperature effects by acclimating the two species at 20, 25, 30, and 35°C and measured the critical oxygen tension (PO2crit) for both species. Additionally, we evaluated the metabolic rate and the enzymes of energy metabolic pathways (CS, MDH, and LDH). Our results showed a larger thermal tolerance polygon, a higher energetic metabolic rate, and higher enzyme levels for P. simulans acclimated to 20 and 35°C compared to P. axelrodi. Paracheirodon simulans also presented a higher hypoxia tolerance, indirectly determined as the PO2cri. Thus, we conclude that the higher metabolic capacity of P. simulans gives this species a better chance to survive at acutely higher temperatures in nature, although it is more vulnerable to chronic exposure.  相似文献   

20.
This is the first report on the effects of temperature (from 17 to 30°C), photoperiod (from 10 to 16 h of light), and diet (the wheat aphid Schizaphis graminum and the green peach aphid Myzus persicae) on preimaginal developmental rates, adult body mass, preoviposition period, and female fecundity of the predatory lady beetle Harmonia quadripunctata (Pontoppidan) under the laboratory conditions. A constant temperature of 30°C was lethal to the embryos. Judging from the data obtained at 17, 20, and 25°C, the lower temperature threshold for total egg-to-adult development equaled 12.0°C and the respective sum of effective temperatures was 274 degree-days. Preimaginal development was somewhat faster under short-day conditions, the threshold for this quantitative photoperiodic response being approximately 14 h at the rearing temperatures of 20 and 25°C. At a temperature of 25°C, the mean body mass of newly emerged adults was greater for those individuals that during the larval stage had been fed on the green peach aphid (16.4 mg in males and 18.4 mg in females) than in those fed with the wheat aphid (13.8 mg in males and 15.3 mg in females). The preoviposition period (measured from adult emergence to the first egg laid) also depended on temperature and had a lower threshold of 13.4°C and a sum of effective temperatures of 152 degree-days. Maximum fecundity was observed at 25°C and 16-h day length; under these conditions, the oviposition period lasted over 100 d, and the average lifetime fecundity was about 800 eggs per female. Under short-day conditions, females of H. quadripunctata entered reproductive diapause. The photoperiodic threshold for this qualitative response at the temperatures of 20 and 25°C was about 14 h when fed on the peach aphid and 15 h when fed on the wheat aphid. Relatively small body size, low fecundity, and a strong photoperiodic response that hinders rapid adaptation to novel climates probably explain the fact that H. quadripunctata, in contrast to H. axyridis, has not become an aggressive invader.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号