首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intramolecular turnover of the terminal carbohydrates L-fucose, N-acetylneuraminic acid and D-galactose is a characteristic property of several liver plasma membrane glycoproteins, first demonstrated for dipeptidylaminopeptidase IV (EC 3.4.14.5., DPP IV). The core carbohydrates D-mannose and N-acetyl-D-glucosamine turn over like the polypeptide chain. The ratio of apparent half-lives of L-fucose and L-methionine of DPP IV is shifted from 0.17 in normal liver to 0.60 in regenerating liver. The ratio of half-lives of N-acetylneuraminic acid and L-methionine is only slightly changed from 0.43 in normal liver to 0.61 in regenerating liver. The ratio of apparent half-lives of D-mannose and L-methionine amounts to 0.80 in normal liver and 0.71 after partial hepatectomy. From this a drastic reduction of the intramolecular turnover of L-fucose on plasma membrane DPP IV in regenerating liver can be derived. The intramolecular N-acetylneuraminic acid turnover is affected to only a minor extent. D-Mannose turns over like the polypeptide in both normal and regenerating liver. The intramolecular L-fucose turnover may be involved in membrane glycoprotein recycling, which presumably is altered in regenerating liver. Additionally, L-fucose could regulate the rate of degradation of DPP IV, since core-fucosylated glycoproteins appear to be resistant to mammalian endo-N-acetylglucosaminidase.  相似文献   

2.
The expression of genes possibly involved in L-methionine and lactate catabolic pathways were performed in Brevibacterium linens (ATCC9175) in the presence or absence of added L-methionine. The expression of 27 genes of 39 selected genes differed significantly in L-methionine-enriched cultures. The expression of the gene encoding L-methionine gamma-lyase (MGL) is high in L-methionine-enriched cultures and is accompanied by a dramatic increase in volatile sulfur compounds (VSC) biosynthesis. Several genes encoding alpha-ketoacid dehydrogenase and one gene encoding an acetolactate synthase were also up-regulated by L-methionine, and are probably involved in the catabolism of alpha-ketobutyrate, the primary degradation product of L-methionine to methanethiol. Gene expression profiles together with biochemical data were used to propose catabolic pathways for L-methionine in B. linens and their possible regulation by L-methionine.  相似文献   

3.
4.
The present paper demonstrates the terminal de- and reglycosylation of a rat hepatocyte plasma membrane glycoprotein, dipeptidyl peptidase IV (DPP IV). Cultured hepatocytes were used in pulse-chase experiments with [3H]L-fucose and [14C]N-acetyl-D-mannosamine as markers for terminal carbohydrates, [3H]D-mannose as marker of a core-sugar, and [35S]L-methionine for labeling the protein backbone. Membrane DPP IV was immunoprecipitated with a polyclonal antibody which bound selectively at 4 degrees C to the cell-surface glycoprotein. The times of maximal labeling of hepatocyte plasma membrane DPP IV were 6-9 min for [3H]L-fucose, 20 min for [3H]D-mannose, and 25 min for [35S]L-methionine. When antibodies were bound to cell-surface DPP IV at 4 degrees C, the immune complex remained stable for more than 1 h after rewarming to 37 degrees C, despite ongoing metabolic and membrane transport processes. This was shown by pulse labeling with [35S]L-methionine at 37 degrees C, followed by cooling to 4 degrees C, and addition of antibody against plasma membrane DPP IV. During rewarming, the radioactivity in the complex remained constant. In a similar experiment with [3H]L-fucose, the radioactivity in the immune complex declined rapidly, indicating a defucosylation of the plasma membrane glycoprotein. Using the same experimental design with [3H]D-mannose, the radioactivity in the immune complex remained constant, showing that the core-sugar D-mannose is not cleaved from the membrane glycoprotein. Terminal reglycosylation (refucosylation and resialylation) was demonstrated as follows. Hepatocytes were maintained at 37 degrees C in a medium supplemented with tunicamycin in order to block the de novo synthesis of N-glycosidically bound carbohydrate chains. At 4 degrees C the antibody against DPP IV bound only to cell surface glycoprotein. During the rewarming period at 37 degrees C, radioactivity from [3H]L-fucose and [14C]N-acetyl-D-mannosamine became incorporated into the immune complex. This indicates a fucosylation and sialylation of the glycoprotein originally present at the cell surface. The mechanisms whereby terminal de- and reglycosylation of plasma membrane glycoproteins may occur during membrane recycling are discussed.  相似文献   

5.
Catabolism of L-methionine by Escherichia coli strain B SPAO led to the formation of ethylene as a secondary metabolite (ethylenogenesis). Methionine was initially deaminated by a transamination reaction to the 2-oxo acid 2-oxo-4-methylthiobutyric acid (KMBA) which was then converted to ethylene. The utilization of L-methionine as an additional nitrogen source was investigated by examining ethylene synthesis under different nitrogen supply conditions. Ethylene formation in batch culture was unaffected by the concentration of the precursor L-methionine in the medium although increasing concentrations of NH4Cl resulted in progressively less ethylene formation. Cultures grown without L-methionine did not produce ethylene but were able to synthesize ethylene when L-methionine or KMBA was provided. Addition of L-tyrosine to batch cultures reduced the yield of ethylene after 42 h by 54%. Under these conditions the maximum transient level of KMBA was reduced by 32% and occurred later compared to when L-methionine was the only amino acid supplement. Continuous cultures grown under ammonia limitation produced both ethylene and KMBA. In contrast, when glucose was limiting, neither of these metabolites were produced. Cells harvested from continuous cultures grown under glucose or ammonia limitation were able to synthesize ethylene from either L-methionine or KMBA although their capacity for ethylene synthesis (ethylenogenic capacity) was optimal under ammonia limitation (C:N ratio = 20).  相似文献   

6.
Treatment of acute cobalt intoxication in rats with L-methionine   总被引:1,自引:0,他引:1  
The antidotal action of L-methionine in acute cobalt (II) chloride intoxication given orally or intraperitoneally to rats has been investigated in this paper. The doses of CoCl2 (2.73 mmole/kg oral, 0.21 mmole/kg i.p.) are always above their LD50 for both means of administration, reaching during oral administration values above its LD95 (4.20 mmole/kg). The doses of L-methionine varied from 0.63 mmole/kg (i.p.) to 8.19 mmole/kg (orally). L-methionine did not show a significant antidotal action (mortality rates) against the other sulphurous aminoacid: L-cysteine, which is considered an effective antidote. The administration of Co2+-methionine chelates prepared in vitro, showed rates of 10% mortality when given orally and 30% when given intraperitoneally, against Co2+-cysteine and co2+-N-acetylcysteine chelates with rates of 0% mortality. No significant functional changes were observed in the survivors killed seven days after administration in groups receiving L-methionine. Although L-methionine cannot be considered an effective antidote, it is likely to reduce partially the toxic effects of cobalt.  相似文献   

7.
Many reservoirs for water supply have been troubled with earthy-musty odour compounds--2-metylisoborneol (2-MIB) and geosmin. Both of these compounds are terpenoid and related to the metabolite of L-methionine. An experiment using [CD3]methionine and [14CH3]methionine showed that the C-2 methyl group in 2-MIB originate from L-methionine. In the incubation experiment with 10-1000 mg/l of L-methionine, 2-MIB and geosmin appeared in the earlier stages, in greater amounts than in the control. The maximum production of 2-MIB and geosmin increased considerably in the experiments with 10 and 100 mg/l of L-methionine. The effective time for L-methionine addition was after 1 d. Additions after 3 and 5 d were similar to the control. In the incubation experiment with 10-1000 mg/l of folic acid, 2-MIB and geosmin increased only during the 1000 mg/l addition. There seems to be little doubt that L-methionine takes part in the metabolism of 2-MIB and geosmin.  相似文献   

8.
Male healthy subjects, fasting 12 hours, ingested increasing amounts of a mixture containing a fixed proportion of seven essential amino acids (L-isoleucine 11.5%, L-leucine 18.0%, L-lysine 13.1%, L-methionine 18.0%, L-phenylalanine 18.0%, L-threonine 8.2%, L-valine 13.1%) and lacking tryptophan. The diets produced a rapid fall in plasma tryptophan which was proportional to the total amount of the amino acids ingested. Following the highest dose administered (36.6 g) plasma tryptophan fell to a minimum of about 35% the initial level and remained markedly reduced at 6 hours after treatment. The mechanism of this decrease and its potential clinical relevance are discussed.  相似文献   

9.
L-Methionine gamma-lyase from Pseudomonas putida has a conserved tyrosine residue (Tyr114) in the active site as in all known sequences of y-family pyridoxal 5'-phosphate dependent enzymes. A mutant form of L-methionine y-lyase in which Tyr114 was replaced by phenylalanine (Y114F) resulted in 910-fold decrease in kcat for alpha,gamma-elimination of L-methionine, while the Km remained the same as the wild type enzyme. The Y114F mutant had the reduced kcat by only 28- and 16-fold for substrates with an electron-withdrawing group at the gamma-position, namely O-acetyl-L-homoserine and L-methionine sulfone, respectively, and also the similar reduction of kcat for alpha,beta-elimination and deamination substrates. The hydrogen exchange reactions of substrate and the spectral changes of the substrate-enzyme complex catalyzed by the mutant enzyme suggested that gamma-elimination process for L-methionine is the rate-limiting determination step in alpha,gamma-elimination overall reaction of the Y114F mutant. These results indicate that Tyr114 of L-methionine gamma-lyase is important in y-elimination of the substrate.  相似文献   

10.
《Inorganica chimica acta》1988,153(4):209-212
The13C NMR chemical shifts of DL-selenomethionine were measured and compared with L-methionine and 2-aminovaleric acid in neutral and basic aqueous solutions. The Cγ and Cδ carbons which are directly attached to the sulphur atom of L-methionine experience a shielding effect compared to the Cγ and Cδ of 2-amonivaleric acid resonances. However, shielding effects were observed on Cγ and Cδ resonances when S was substituted by Se, i.e., on going from L-methionine to DL-selenomethionine. The interaction of L-methionine and DL-selenomethionine with aurothiomalate was also studied. The results show that L-methionine does not bind to gold(I) at any pH. However, there is a weak binding observed with DL-selenomethionine in basic aqueous solutions, as seen by 13C NMR spectroscopy.  相似文献   

11.
Diversity of L-methionine catabolism pathways in cheese-ripening bacteria   总被引:2,自引:0,他引:2  
Enzymatic activities that could be involved in methanethiol generation in five cheese-ripening bacteria were assayed, and the major sulfur compounds produced were identified. L-Methionine and alpha-keto-gamma-methyl-thio-butyric acid demethiolating activities were detected in whole cells and cell extracts (CFEs) of all the bacteria tested. No L-methionine deaminase activity could be detected in any of the ripening bacteria and L-methionine aminotransferase was detected in CFEs of Brevibacterium linens, Micrococcus luteus, and Corynebacterium glutamicum. The results suggest that several pathways for L-methionine catabolism probably coexist in these ripening bacteria.  相似文献   

12.
The enzymatic degradation of L-methionine and the subsequent formation of volatile sulfur compounds (VSCs) are essential for the development of the typical flavor in cheese. In the yeast Yarrowia lipolytica, the degradation of L-methionine was accompanied by the formation of the transamination product 4-methylthio-2-oxobutyric acid. A branched-chain aminotransferase gene (YlBCA1) of Y. lipolytica was amplified, and the L-methionine-degrading activity and the aminotransferase activity were measured in a genetically modified strain and compared to those of the parental strain. Our work shows that L-methionine degradation via transamination is involved in formation of VSCs in Y. lipolytica.  相似文献   

13.
1. (1) An unusual accumulation of S-adenosyl-L-methionine in Chromatium D was associated with a marked growth inhibition by L-methionine. The inhibition was overcome by L-isoleucine, L-leucine, L-phenylalanine, L-threonine, L-valine and putrescine. Based on their effects, these compounds are classified into 3 types.
2. (2) L-Isoleucine, L-leucine, L-phenylalanine and L-valine (Type I) inhibited the L-methionine uptake and consequently prevented the bacterium from the unusual accumulation of S-adenosyl-L-methionine even in the presence of L-methionine in the medium. Putrescine (Type II) stimulated the consumption of S-adenosyl-L-methionine, but did not influence the L-methionine uptake. Hence, the effect of putrescine would be explained by the action to diminish the intracellular level of S-adenosyl-L-methionine. L-Threonine (Type III) neither inhibited the L-methionine uptake nor affected the content of S-adenosyl-L-methionine due to the addition of L-methionine.
3. (3) The specific activity of homoserine kinase (EC 2.7.1.39) was greatly lowered by the addition of L-methionine under conditions in which Chromatium D unusually accumulates S-adenosyl-L-methionine. Homoserine dehydrogenase (EC 1.1.1.3) activity was inhibited by S-adenosyl-L-methionine (50% inhibition index, 3.5 mM). These facts strongly suggest that the growth inhibition by L-methionine is associated with the L-threonine deficiency caused by the unusual accumulation of S-adenosyl-L-methionine.
Abbreviations: AdoMet; S-adenosyl-L-methionine  相似文献   

14.
1. In 102 laboratory rats fed with (a) the krill standardized meal, (b) the krill meal with low chitin content, (c) the casein diet with D,L-methionine, (d) the casein diet with D,L-methionine supplemented with the krill carapace meal, (e) the casein diet with D,L-methionine supplemented with ash from the krill standardized meal and (f) the control diet--"Murigran" standard pelleted feed; the different blood indices were investigated. 2. The mean values of following indices: the number of erythrocytes and leucocytes, the percentage of leucocytes, the corpuscular haemoglobin concentration and red blood cell diameter were similar in all experimental and control groups. 3. The mean values of haematocrit and haemoglobin levels, the mean corpuscular thickness and volume were lower in rats fed with the casein diet with D,L-methionine supplemented with the krill carapace meal than in other groups. 4. All kinds of investigated indices were similar in rats fed with krill meal with low chitin contents, whose parents received the standardized krill meal and no sex differences have been shown here.  相似文献   

15.
&#  &#  &#  &#  &#  &#  &#  &#  &#  Jos&  eacute  Luis Zambonino-Infante  Chantal Louise Cahu 《水生生物学报》2013,37(6):1094-1102
研究了1242日龄大黄鱼(Pseudosciaena crocea R.)稚鱼蛋氨酸需要量。以白鱼粉、磷虾粉和乌贼粉作蛋白源,通过添加L-晶体氨基酸使饲料与大黄鱼卵的必需氨基酸组成一致(蛋氨酸除外),制成6种等氮(8.8%)等能(16.65 kJ/g)的微黏合饲料。L-蛋氨酸梯度依次为饲料的1.19%、1.62%、2.18%、2.65%、3.13%和3.66%,或饲料蛋白的2.17%、2.95%、3.95%、4.81%、5.70%和6.65%。以生物饵料(丰年虫无节幼体和桡足类)作对照组。每处理设3个重复,每桶(180 L)内随机放3500尾初始体重为(1.930.11) mg 的12日龄大黄鱼稚鱼。实验为期30d。结果显示,稚鱼的成活率随饲料蛋氨酸水平的升高而升高,在2.18%蛋氨酸水平时达到最高,之后无显著变化。特定生长率(SGR)随饲料蛋氨酸水平的升高而升高,在2.18%蛋氨酸水平时达到最高,之后则呈下降趋势。对照组稚鱼的成活率和SGR最高,均显著高于蛋氨酸组(P0.05)。各组间稚鱼体脂肪和灰分差异不显著,但体蛋白随饲料蛋氨酸水平的升高而升高,在2.65%蛋氨酸水平时达到最高,之后则稍微下降;对照组鱼体蛋白和各必需氨基酸含量均显著高于其他组(P0.05)。经二次多项式模型分析,1242日龄大黄鱼稚鱼的蛋氨酸需要量为饲料的2.58%或饲料蛋白的4.69%。    相似文献   

16.
In the presence of ATP and Mg2+ L-methionine sulfoximine irreversibly inhibits homogeneous glutamine synthetase (EC 6.3.1.2) from pea chloroplasts (I0.5 = 1.0 x 10(-7) M; Ki = 6.25 . 10(-8) M. Glutamate (but not NH4Cl) exerts a protective effect, which is enhanced when glutamate and NH4Cl are simultaneously present in the reaction mixture. The inhibiting action of L-methionine sulfoximine with respect to glutamate is of a mixed type. ATP and Mg-ATP produce the same non-competitive protective effect on L-methionine sulfoximine. The data obtained suggest that the formation of a quaternary complex (or a transition state) between the enzyme and all its substrates is essential for the catalysis.  相似文献   

17.
L-Methionine gamma-lyase (EC 4.4.1.11) is a pyridoxal 5'-phosphate-dependent multifunctional enzyme. Measuring the initial velocity of alpha-ketobutyrate production by alpha,gamma-elimination of L-methionine catalyzed by L-methionine gamma-lyase is not very feasible, because the enzyme simultaneously catalyzes both gamma-replacement and alpha,gamma-elimination. To develop an accurate enzyme assay, the comprehensive enzyme kinetics needed to be elucidated by progress curve analysis on the basis of a reaction model for conversion of L-methionine to alpha-ketobutyrate, methanethiol, and ammonia with pyridoxal 5'-phosphate as a cofactor. Kinetic parameters were determined by linear transformation using an approximation of a Maclaurin series from the whole velocity of alpha-ketobutyrate production including alpha,gamma-elimination and gamma-replacement. The significance of gamma-replacement was revealed both theoretically and practically by the kinetic analysis. The enzyme activity was standardized and represented as the Vmax value taking into consideration gamma-replacement in the presence of L-methionine at 37 degrees C and pH 8.0. The novel method that we proposed is accurate, sensitive, reproducible, and linear over a wide range for the determination of L-methionine gamma-lyase activity.  相似文献   

18.
Tracing experiments were carried out to identify volatile and nonvolatile L-methionine degradation intermediates and end products in the yeast Geotrichum candidum and in the bacterium Brevibacterium linens, both of which are present in the surface flora of certain soft cheeses and contribute to the ripening reactions. Since the acid-sensitive bacterium B. linens is known to produce larger amounts and a greater variety of volatile sulfur compounds (VSCs) than the yeast G. candidum produces, we examined whether the L-methionine degradation routes of these microorganisms differ. In both microorganisms, methanethiol and alpha-ketobutyrate are generated; the former compound is the precursor of other VSCs, and the latter is subsequently degraded to 2,3-pentanedione, which has not been described previously as an end product of L-methionine catabolism. However, the L-methionine degradation pathways differ in the first steps of L-methionine degradation. L-Methionine degradation is initiated by a one-step degradation process in the bacterium B. linens, whereas a two-step degradation pathway with 4-methylthio-2-oxobutyric acid (MOBA) and 4-methylthio-2-hydroxybutyric acid (MHBA) as intermediates is used in the yeast G. candidum. Since G. candidum develops earlier than B. linens during the ripening process, MOBA and MHBA generated by G.candidum could also be used as precursors for VSC production by B. linens.  相似文献   

19.
L-Methionine induced production of ethylene by Saccharomyces cerevisiae growing in lactate medium. The production induced by L-methionine was inhibited by pyruvate, and elevated by glucose. Labeled ethylene was produced when L-[U-14C]methionine, but not [U-14C]glucose, was fed to the yeast. The mutant S. cerevisiae G1332 (ade-, met-) did not produce significant amounts of ethylene unless L-methionine was added. Thus L-methionine acts as a precursor of ethylene in S. cerevisiae. The role of glucose appears to be other than as a precursor.  相似文献   

20.
Neurological dysfunction is common in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the neuropathology of this disorder are poorly known. In the present study we investigated the effect of acute hyperleucinemia on plasma and brain concentrations of amino acids. Fifteen-day-old rats were injected subcutaneously with 6 micromol L-leucine per gram body weight. Controls received saline in the same volumes. The animals were sacrificed 30--120 min after injection, blood was collected and their brain rapidly removed and homogenized. The amino acid concentrations were determined by HPLC using orthophtaldialdehyde for derivatization and fluorescence for detection. The results showed significant reductions of the large neutral amino acids (LNAA) L-phenylalanine, L-tyrosine, L-isoleucine, L-valine and L-methionine, as well as L-alanine, L-serine and L-histidine in plasma and of L-phenylalanine, L-isoleucine, L-valine and L-methionine in brain, as compared to controls. In vitro experiments using brain slices to study the influence of leucine on amino acid transport and protein synthesis were also carried out. L-Leucine strongly inhibited [14C]-L-phenylalanine transport into brain, as well as the incorporation of the [14C]-amino acid mixture, [14C]-L-phenylalanine and [14C]-L-lysine into the brain proteins. Although additional studies are necessary to evaluate the importance of these effects for MSUD, considering previous findings of reduced levels of LNAA in plasma and CSF of MSUD patients during crises, it may be speculated that a decrease of essential amino acids in brain may lead to reduction of protein and neurotransmiter synthesis in this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号