共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Park SH Choi HJ Yang H Do KH Kim J Moon Y 《Journal of immunology (Baltimore, Md. : 1950)》2010,185(9):5522-5530
CCAAT/enhancer-binding protein homologous protein (CHOP) is a crucial stress-responsive factor in various mucosal injuries, including cellular translational stress conditions. In this study, chemical ribosome-inactivating stresses were assessed for their effects on stress-inducible CHOP expression and its association with epithelial inflammatory cytokine production. Several representative ribotoxic agents (deoxynivalenol, anisomycin, and 15-acetyldeoxynivalenol) enhanced CHOP expression and its nuclear translocation in human intestinal epithelial cells. Moreover, CHOP was a strong positive regulator of IL-8 production, but CHOP-mediated IL-8 production was inversely associated with expression of the mucosal regulatory factor peroxisome proliferator-activated receptor γ (PPARγ). Based on our recent report that PPARγ is a negative regulator of mRNA stability of IL-8, PPARγ was linked to a notable mRNA stabilizing protein, HuR, since ribotoxin-induced IL-8 mRNA is stabilized by HuR protein. Expression of exogenous PPARγ suppressed ribotoxin-triggered cytoplasmic translocation of HuR. In contrast, PPARγ-regulating CHOP was a positive modulator of HuR protein export from nuclei. Taken together, the results indicate that ribotoxin-induced CHOP protein is positively associated with production of proinflammatory cytokine IL-8, but it downregulates PPARγ action, subsequently allowing the cytosolic translocation of HuR protein and stabilization of IL-8 mRNA in gut epithelial cells. CHOP and PPARγ may represent critical mechanistic links between ribotoxic stress and proinflammatory cytokine production, and they may have a broader functional significance with regard to gastrointestinal stresses by toxic mucosal insults. 相似文献
3.
4.
Han S Ritzenthaler JD Wingerd B Roman J 《The Journal of biological chemistry》2005,280(39):33240-33249
5.
P Gervois N Vu-Dac R Kleemann M Kockx G Dubois B Laine V Kosykh J C Fruchart T Kooistra B Staels 《The Journal of biological chemistry》2001,276(36):33471-33477
6.
Kang S Bennett CN Gerin I Rapp LA Hankenson KD Macdougald OA 《The Journal of biological chemistry》2007,282(19):14515-14524
7.
Cloning and function of rabbit peroxisome proliferator-activated receptor delta/beta in mature osteoclasts 总被引:2,自引:0,他引:2
Mano H Kimura C Fujisawa Y Kameda T Watanabe-Mano M Kaneko H Kaneda T Hakeda Y Kumegawa M 《The Journal of biological chemistry》2000,275(11):8126-8132
Osteoclasts modulate bone resorption under physiological and pathological conditions. Previously, we showed that both estrogens and retinoids regulated osteoclastic bone resorption and postulated that such regulation was directly mediated through their cognate receptors expressed in mature osteoclasts. In this study, we searched for expression of other members of the nuclear hormone receptor superfamily in osteoclasts. Using the low stringency homologous hybridization method, we isolated the peroxisome proliferator-activated receptor delta/beta (PPARdelta/beta) cDNA from mature rabbit osteoclasts. Northern blot analysis showed that PPARdelta/beta mRNA was highly expressed in highly enriched rabbit osteoclasts. Carbaprostacyclin, a prostacyclin analogue known to be a ligand for PPARdelta/beta, significantly induced both bone-resorbing activities of isolated mature rabbit osteoclasts and mRNA expression of the cathepsin K, carbonic anhydrase type II, and tartrate-resistant acid phosphatase genes in these cells. Moreover, the carbaprostacyclin-induced bone resorption was completely blocked by an antisense phosphothiorate oligodeoxynucleotide of PPARdelta/beta but not by the sense phosphothiorate oligodeoxynucleotide of the same DNA sequence. Our results suggest that PPARdelta/beta may be involved in direct modulation of osteoclastic bone resorption. 相似文献
8.
9.
10.
Epithelium-mesenchyme interactions control the activity of peroxisome proliferator-activated receptor beta/delta during hair follicle development 总被引:3,自引:0,他引:3 下载免费PDF全文
Di-Poï N Ng CY Tan NS Yang Z Hemmings BA Desvergne B Michalik L Wahli W 《Molecular and cellular biology》2005,25(5):1696-1712
Hair follicle morphogenesis depends on a delicate balance between cell proliferation and apoptosis, which involves epithelium-mesenchyme interactions. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and Akt1 are highly expressed in follicular keratinocytes throughout hair follicle development. Interestingly, PPARbeta/delta- and Akt1-deficient mice exhibit similar retardation of postnatal hair follicle morphogenesis, particularly at the hair peg stage, revealing a new important function for both factors in the growth of early hair follicles. We demonstrate that a time-regulated activation of the PPARbeta/delta protein in follicular keratinocytes involves the up-regulation of the cyclooxygenase 2 enzyme by a mesenchymal paracrine factor, the hepatocyte growth factor. Subsequent PPARbeta/delta-mediated temporal activation of the antiapoptotic Akt1 pathway in vivo protects keratinocytes from hair pegs against apoptosis, which is required for normal hair follicle development. Together, these results demonstrate that epithelium-mesenchyme interactions in the skin regulate the activity of PPARbeta/delta during hair follicle development via the control of ligand production and provide important new insights into the molecular biology of hair growth. 相似文献
11.
12.
The nuclear hormone receptor peroxisome proliferator-activated receptor beta/delta potentiates cell chemotactism, polarization, and migration 下载免费PDF全文
Tan NS Icre G Montagner A Bordier-ten-Heggeler B Wahli W Michalik L 《Molecular and cellular biology》2007,27(20):7161-7175
After an injury, keratinocytes acquire the plasticity necessary for the reepithelialization of the wound. Here, we identify a novel pathway by which a nuclear hormone receptor, until now better known for its metabolic functions, potentiates cell migration. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) enhances two phosphatidylinositol 3-kinase-dependent pathways, namely, the Akt and the Rho-GTPase pathways. This PPARbeta/delta activity amplifies the response of keratinocytes to a chemotactic signal, promotes integrin recycling and remodeling of the actin cytoskeleton, and thereby favors cell migration. Using three-dimensional wound reconstructions, we demonstrate that these defects have a strong impact on in vivo skin healing, since PPARbeta/delta-/- mice show an unexpected and rare epithelialization phenotype. Our findings demonstrate that nuclear hormone receptors not only regulate intercellular communication at the organism level but also participate in cell responses to a chemotactic signal. The implications of our findings may be far-reaching, considering that the mechanisms described here are important in many physiological and pathological situations. 相似文献
13.
14.
S J Muga P Thuillier A Pavone J E Rundhaug W E Boeglin M Jisaka A R Brash S M Fischer 《Cell growth & differentiation》2000,11(8):447-454
To determine the function and mechanism of action of the 8S-lipoxygenase (8-LOX) product of arachidonic acid, 8S-hydroxyeicosatetraenoic acid (8S-HETE), which is normally synthesized only after irritation of the epidermis, transgenic mice with 8-LOX targeted to keratinocytes through the use of a loricrin promoter were generated. Histological analyses showed that the skin, tongue, and stomach of transgenic mice are highly differentiated, and immunoblotting and immunohistochemistries of skin showed higher levels of keratin-1 expression compared with wild-type mice. The labeling index, however, of the transgenic epidermis was twice that of the wild-type epidermis. Furthermore, 8S-HETE treatment of wild-type primary keratinocytes induced keratin-1 expression. Peroxisome proliferator activated receptor alpha (PPARalpha) was identified as a crucial component of keratin-1 induction through transient transfection with expression vectors for PPARalpha, PPARgamma, and a dominant-negative PPAR, as well as through the use of known PPAR agonists. From these studies, it is concluded that 8S-HETE plays an important role in keratinocyte differentiation and that at least some of its effects are mediated by PPARalpha. 相似文献
15.
16.
The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood, but there is a strong correlation between insulin resistance and intramyocellular lipid accumulation in skeletal muscle. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. The aim of this work was to study whether the exposure of skeletal muscle cells to palmitate affected peroxisome proliferator-activated receptor (PPAR) beta/delta activity. Here, we report that exposure of C2C12 skeletal muscle cells to 0.75 mM palmitate reduced (74%, P<0.01) the mRNA levels of the PPARbeta/delta-target gene pyruvatedehydrogenase kinase 4 (PDK-4), which is involved in fatty acid utilization. This reduction was not observed in the presence of the PPARbeta/delta agonist L-165041. This drug prevented palmitate-induced nuclear factor (NF)-kappaB activation. Increased NF-kappaB activity after palmitate exposure was associated with enhanced protein-protein interaction between PPARbeta/delta and p65. Interestingly, treatment with the PPARbeta/delta agonist L-165041 completely abolished this interaction. These results indicate that palmitate may reduce fatty acid utilization in skeletal muscle cells by reducing PPARbeta/delta signaling through increased NF-kappaB activity. 相似文献
17.
18.
Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor beta/delta 下载免费PDF全文
Nadra K Anghel SI Joye E Tan NS Basu-Modak S Trono D Wahli W Desvergne B 《Molecular and cellular biology》2006,26(8):3266-3281
Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application. 相似文献
19.
20.
Effects of peroxisome proliferator-activated receptor alpha/delta agonists on HDL-cholesterol in vervet monkeys 总被引:3,自引:0,他引:3
Wallace JM Schwarz M Coward P Houze J Sawyer JK Kelley KL Chai A Rudel LL 《Journal of lipid research》2005,46(5):1009-1016
The objective of this study was to demonstrate the efficacy of a novel peroxisome proliferator-activated receptor (PPAR) agonist and known PPARalpha and PPARdelta agonists to increase HDL-cholesterol (HDL-C) in the St. Kitts vervet, a nonhuman primate model of atherosclerosis. Four groups (n = 6) were studied and each group was assigned one of the following "treatments": a) vehicle only (vehicle); b) the PPARdelta selective agonist GW501516 (GW); c) the PPARalpha/delta agonist T913659 (T659); and d) the PPARalpha agonist TriCor (fenofibrate). No statistically significant changes were seen in body weight, total plasma cholesterol, plasma triglycerides, VLDL-C, LDL-C, or apolipoprotein B (apoB) concentrations. Each of the PPARalpha and PPARdelta agonists investigated in this study increased plasma HDL-C, apoA-I, and apoA-II concentrations and increased HDL particle size in St. Kitts vervets. The maximum percentage increase in HDL-C from baseline for each group was as follows: vehicle, 5%; GW, 43%; T659, 43%; and fenofibrate, 20%. Treatment with GW and T659 resulted in an increase in medium-sized HDL particles, whereas fenofibrate showed increases in large HDL particles. These data provide additional evidence that PPARalpha and PPARdelta agonists (both mixed and selective) have beneficial effects on HDL-C in these experimental primates. 相似文献