首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of thyroid hormone deficiency on 5-HT1A receptors, 5-HT2A receptors and serotonin transporter in the brain were studied in thyroidectomised Wistar rats receiving an iodine-free diet and receiving 15 micrograms/kg of thyroxine for 21 days. Binding of 3H-8-OH-DPAT to 5-HT1A receptors and 3H-cytalopram to serotonin transporter were unchanged in hypothyroid rats as compared to the control. 3H-ketanserin binding to 5-HT2A receptors was significantly decreased in the frontal cortex in hypothyroid rats. The cortical 3H-ketanserin binding in thyroidectomised rats was normalised after thyroxine replacement. The data suggest that the decrease in the cortical 5-HT2A receptors is the main consequence of impairing effect of hypothyroidism on serotonin neurotransmission.  相似文献   

2.
Helen E. Raybould   《Peptides》1991,12(6):1279-1283
The role of vagal afferent pathways and cholecystokinin (CCK) in mediating changes in gastric motor function after a meal was investigated in urethane-anesthetized rats. Proximal gastric motor function was measured manometrically, and nutrients were infused into an isolated segment of duodenum. Inhibition of gastric motility in response to duodenal infusion of protein (peptone or casein), but not carbohydrate (glucose), was significantly attenuated by administration of the CCK antagonist, L364,718. Selective ablation of vagal afferents by perineural treatment with the sensory neurotoxin, capsaicin, significantly reduced responses to both duodenal protein and glucose. These results suggest that protein in the duodenum decreases proximal gastric motor function via release of CCK and a vagal capsaicin-sensitive afferent pathway. In contrast, glucose acts via a capsaicin-sensitive vagal pathway not involving CCK. Thus separate neural and hormonal mechanisms mediate the effects of different nutrients in the duodenal feedback regulation of gastric motor function.  相似文献   

3.
The effect of bombesin (BBS) and gastrin releasing peptide (GRP) on gastric emptying was studied in conscious cats. This effect was measured simultaneously with antral motility. Acid and pepsin secretions as well as blood hormonal peptide release were additionally measured. A dual effect was observed. First, BBS and GRP slowed gastric emptying of liquids, while antral motility was decreased, then after 60 minutes of continuous intravenous infusion, antral motility returned to basal values and gastric emptying effect reversed. The mechanism of this peculiar action is independent of gastrin, pancreatic polypeptide, somatostatin and motilin release and most probably connected with a cholinergic stimulation induced by the peptides, the late predominance of which counterbalances the inhibitory effect of bombesin-like peptides on antral motility.  相似文献   

4.
Intestinal perfusion with carbohydrates inhibits gastric emptying via vagal and spinal capsaicin-sensitive afferent pathways. The aim of the present study was to determine the role of 1) 5-hydroxytryptamine (5-HT)(3) receptors (5-HT(3)R) in mediating glucose-induced inhibition of gastric emptying and 2) 5-HT(3)R expression in vagal and spinal afferents in innervating the duodenum. In awake rats fitted with gastric and duodenal cannulas, perfusion of the duodenum with glucose (50 and 100 mg) inhibited gastric emptying. Intestinal perfusion of mannitol inhibited gastric emptying only at the highest concentration (990 mosm/kgH(2)O). Pretreatment with the 5-HT(3)R antagonist tropisetron abolished both glucose- and mannitol-induced inhibition of gastric emptying. Retrograde labeling of visceral afferents by injection of dextran-conjugated Texas Red into the duodenal wall was used to identify extrinsic primary afferents. Immunoreactivity for 5-HT(3)R, visualized with an antibody directed to the COOH terminus of the rat 5-HT(3)R, was found in >80% of duodenal vagal and spinal afferents. These results show that duodenal extrinsic afferents express 5-HT(3)R and that the receptor mediates specific glucose-induced inhibition of gastric emptying. These findings support the hypothesis that enterochromaffin cells in the intestinal mucosa release 5-HT in response to glucose, which activates 5-HT(3)R on afferent nerve terminals to evoke reflex changes in gastric motility. The primary glucose sensors of the intestine may be mucosal enterochromaffin cells.  相似文献   

5.
The role of the vagus nerve in the control of gastrin releasing peptide (GRP) stimulated gastroenteropancreatic hormone release and gastric acid secretion was investigated in four conscious gastric fistula dogs using a technique of bilateral cryogenic vagal blockade. A 90-min infusion of GRP at a dose of 400 pmol X kg-1. h-1 produced significant elevations in plasma levels of gastrin, motilin, GIP, enteroglucagon, insulin, pancreatic glucagon, pancreatic polypeptide and VIP. Vagal blockade reversibly inhibited the rise of plasma PP and significantly blunted the elevation of plasma VIP. However, the GRP stimulated response of the other hormones investigated was not modified by vagal blockade. Similarly, the substantial secretion of gastric acid observed with GRP was not influenced by vagal blockade. Thus GRP acts predominantly via mechanisms which are independent of vagal integrity, findings that are in support of a major role for the local neuromodulation of hormone release and gastric acid secretion.  相似文献   

6.
Serotonin type 3 (5-HT(3)) receptors have been shown to participate in the negative-feedback control of food intake. We previously reported that cholecystokinin (CCK)-induced suppression of food intake is partly mediated through 5-HT(3) receptors when rats were tested on a preferred liquid diet, but whether such an effect occurs when they are tested on a solid maintenance diet is unknown. In the present study, we examined the effects of ondansetron, a selective 5-HT(3) antagonist, on CCK-induced suppression of solid chow intake. Intraperitoneal administration of ondansetron significantly attenuated 30- and 60-min CCK-induced reduction of food intake, with suppression being completely reversed by 120 min. It is not known whether 5-HT(3) receptors directly mediate CCK-induced satiation or whether their participation depends on CCK acting as part of a feedback cascade to inhibit ongoing intake. Because CCK-induced inhibition of sham feeding does not depend on additive gastric/postgastric-feedback signals, we examined the ability of ondansetron to reverse CCK-induced satiation in sham-feeding rats. Ondansetron did not attenuate reduction of sham feeding by CCK, suggesting that ondansetron does not directly antagonize CCK-satiation signals. CCK suppresses real feeding through a delay in gastric emptying. Ondansetron could attenuate CCK-induced reduction of food intake by reversing CCK-induced inhibition of gastric emptying. We found that blockade of 5-HT(3) receptors attenuates CCK-induced inhibition of gastric emptying of a solid meal, as well as saline and glucose loads. We conclude that 5-HT(3) receptors mediate CCK-induced satiation through indirect mechanisms as part of a feedback cascade involving inhibition of gastric emptying.  相似文献   

7.
Pineal hormone melatonin is proposed as a potential treatment for severe sleep disturbances, and various gastrointestinal disorders. It was shown that melatonin increases intestinal motility and influences the activity of myoelectric complexes of the gut. The aim of the study was to evaluate the mechanisms of the effect of exogenous melatonin on gastric emptying rate. Male Sprague-Dawley rats were fitted with gastric cannulas under anesthesia. The rate of gastric emptying of saline was determined after instillation into the gastric fistula, from the volume and phenol red concentrations recovered after 5 min. Melatonin injected intraperitoneally (ip; 0.001-100 mg/kg) delayed gastric emptying rate of saline at 3 and 10 mg/kg doses. When administered ip 15 min before melatonin (10 mg/kg) injections, CCK2 (L-365,260, 1 mg/kg) or 5-HT3 receptor (ramosetrone, 50 microg/kg) blockers abolished melatonin-induced delay in gastric emptying rate, while the blockade of sympathetic ganglia (bretylium tosylate, 15 mg/kg) significantly reduced the delay in gastric emptying rate. CCK1 receptor blocker (L-364,718, 1 mg/kg) had no significant effect on the delaying action of melatonin. Our results indicate that pharmacological doses of melatonin delay gastric emptying via mechanisms that involve CCK2 and 5-HT3 receptors. Moreover, it appears that exogenous melatonin inhibits gastric motility in part by activating sympathetic neurons.  相似文献   

8.
The purpose of this study was to determine whether the 5-hydroxytryptamine7 (5-HT7) receptor is expressed by nociceptor-like neurons in the rat PNS and whether 5-HT activates these nociceptors via the 5-HT7 receptor subtype. Using a polyclonal antibody and the method of immunofluorescence staining, we demonstrated that the 5-HT7 receptor appears predominately on "nociceptor-like" neurons of the rat lumbar dorsal root ganglia. Using immunocytochemical methods, we showed that the immunoreactivity of the 5-HT7 receptor antibody complex is localized in the superficial layers of the spinal cord dorsal horn, which corresponds with laminae I, IIouter and IIinner. Furthermore, we demonstrated that noxious stimulation produced by knee injection of 5-HT or a 5-HT7 agonist dose-dependently increases c-Fos production of the rat spinal cord dorsal horn. This effect was significantly inhibited by the preinjection of a 5-HT7 antagonist. We conclude that the 5-HT7 receptor is expressed by rat primary afferent nociceptors which terminate in the superficial layers of the spinal cord dorsal horn and that the 5-HT7 receptor subtype is involved in nociceptor activation by 5-HT.  相似文献   

9.
A complex sensitivity of afferent nerves in the mesentery of the rat jejunum to systemic administration of histamine has recently been demonstrated. In the present study, we aimed to characterize subpopulations of mesenteric afferents that mediate this afferent nerve response. Multiunit afferent discharge was recorded from mesenteric nerves supplying the proximal jejunum in anesthetized rats. The majority of mesenteric bundles (84%) exhibited biphasic responses to histamine (8 micromol/kg), and these bundles also responded to 2-methyl-5-HT (2m5HT). In contrast, monophasic responses lacked a short-latency component, and these bundles failed to respond to 2m5HT. Single-unit analysis revealed a population of afferents that possessed cosensitivity for 2m5HT and histamine. This population of afferents was absent in chronically vagotomized animals, whereas mucosal anesthesia with luminal lidocaine reversibly converted the biphasic profile to a monophasic one. Ondansetron (500 microg/kg) blocked the response to 2m5HT with no effect on the profile of the histamine response, whereas pyrilamine (5 mg/kg) blocked the histamine response without affecting the response to 2m5HT. We conclude that histamine-sensitive afferents exist in the rat proximal jejunum that also respond to 5-HT via the 5-HT3 receptor. These fibers appear to be vagal afferents originating in the intestinal mucosa and may be involved in the organization of mast cell-mediated responses.  相似文献   

10.
We investigated the peripheral effects of an H3-receptor agonist and an H3-receptor antagonist (R)alpha-methylhistamine (Ralpha-MeHA) and thioperamide, respectively, on basal feeding and the CCK8-induced inhibition of food intake in rat. Intraperitoneal injection of thioperamide reduced food intake in a dose-dependent manner with maximal inhibition (35%, P<0.01 vs saline) at 3 mg/kg. (R)alpha-MeHA (0.3-3 mg/kg i.p.), an H3-receptor agonist alone had no effect on feeding but reversed the thioperamide-induced inhibition of food intake in a dose-dependent manner. The maximal feeding inhibitory dose of thioperamide (3 mg.kg i.p) increased by 40% and 22 % (P<0.01 vs saline) brain and stomach histamine contents, respectively. Histamine (0.3 - 6 mg/kg i.p.) and CCK-8 (3 - 30 microg/kg i.p) also inhibited food intake in a dose-dependent manner. Inhibition was 20% to 40% for histamine and 40% to 80% (P<0.01 vs saline) for CCK8. CCK-8 inhibition of feeding was increased by thioperamide and prevented by (R)alpha-MeHA in a dose-dependent way. In addition, CCK-8 did not reduce food intake if rats were pretreated with pyrilamine or ranitidine postsynaptic H1- and H2-receptor antagonists respectively. Our data suggest that the H3-receptor is involved in basal feeding. They also suggest that CCK satiety depends upon the release of histamine which acts on the H2- and H1-receptors, the final mediators of this effect.  相似文献   

11.
The effects of intravenous infusions of morphine, met-enkephalin and leu-enkephalin on gastric acid secretion, gastrin release and gastric emptying were investigated in four dogs with gastric cannulas stimulated by a liquid peptone meal. The actions of a potent opiate antagonist, naloxone, used alone or combined with opiates were also studied. Morphine, met-and leu-enkephalin decreased the fractional gastric emptying rate. Acid secretion was decreased by enkephalins and increased by high doses of morphine. Enkephalins and to a lesser degree morphine inhibited gastrin release during the first hour following the administration of the meal. Only leu-enkephalin decreases significantly the integrated gastrin response. Naloxone at the doses used antagonized partly or totally the effects of opiates on gastric emptying but not those on gastric secretion or gastrin release. Naloxone infused alone had no significant effect on the gastric functions tested. These studies indicate that in dogs stimulated by a liquid test meal, enkephalins inhibit gastric emptying, acid secretion and gastrin release. Morphine inhibits gastric emptying and gastrin release and enhances acid secretion.  相似文献   

12.
《Journal of Physiology》1997,91(3-5):209-213
To characterize the involvement of brainstem cyclooxygenase (COX) in the vagal control of gastric motor function, tolmetin, a reversible COX inhibitor, was applied to the surface of the dorsal medulla oblongata or microinjected into the dorsal vagal complex (DVC) in β-chloralose anesthetized rats, while intragastric pressure and contractile activity of the pyloric circular and greater curvature longitudinal muscle were monitored. Tolmetin, applied to the surface of the medulla oblongata, increased intragastric pressure and stimulated contractile activity of gastric smooth muscle. Comparable gastric motor effects were observed after microinjection of tolmetin into the DVC. All the effects of tolmetin were abolished by bilateral vagotomy at the midcervical level. These results demonstrate for the first time that COX inhibition evokes vagally-mediated gastric motor effects in the DVC of the rat and support a role for COX products in gastrointestinal regulation.  相似文献   

13.
Summary The relationship between bombesin-like immunoreactive (bombesin-LI) nerve fibres and gastrin-LI G-cells was examined in gastric antral mucosa from guineapig, rat, dog and man using a double-labelling fluorescence immunohistochemical technique. The greatest density of bombesin-LI nerve fibres was found within the basal mucosa in all species and the density of innervation decreased towards the luminal surface. Most G-cells were in a band occupying approximately the middle third of the mucosa. The proportion of G-cells found within a distance of 2 m from bombesin-LI nerve fibres was low in all species (6% in the guinea-pig, 22% in the rat, 14% in the dog, and 9% in the human). It is proposed that the neuropeptide released from bombesin-LI antral mucosal nerve fibres traverses distances of greater than several m to reach the target G-cells. This may be achieved by passage through the mucosal microcirculation.  相似文献   

14.
This study was designed to determine the role of cholecystokinin (CCK) in the inhibition of gastric HCl secretion by duodenal peptone, fat and acid in dogs with chronic gastric and pancreatic fistulas. Intraduodenal instillation of 5% peptone stimulated both gastric HCl secretion and pancreatic protein secretion and caused significant increments in plasma gastrin and CCK levels. L-364,718, a selective antagonist of CCK-A receptors, caused further increase in gastric HCl and plasma gastrin responses to duodenal peptone but reduced the pancreatic protein outputs in these tests by about 75%. L-365,260, an antagonist of type B receptors, reduced gastric acid by about 25% but failed to influence pancreatic response to duodenal peptone. Addition of 10% oleate or acidification of peptone to pH 3.0 profoundly inhibited acid secretion while significantly increasing the pancreatic protein secretion and plasma CCK levels. Administration of L-364,718 reversed the fall in gastric HCl secretion and significantly attenuated pancreatic protein secretion in tests with both peptone plus oleate and peptone plus acid. Exogenous CCK infused i.v. in a dose (25 pmol/kg per h) that raised plasma CCK to the level similar to that achieved by peptone meal plus fat resulted in similar inhibition of gastric acid response to that attained with fat and this effect was completely abolished by the pretreatment with L-364,718. We conclude that CCK released by intestinal peptone meal, containing fat or acid, exerts a tonic inhibitory influence on gastric acid secretion and gastrin release through the CCK-A receptors.  相似文献   

15.
The objective of this study was to compare the gastrin- and gastric inhibitory peptide (GIP)-releasing actions of bombesin, gastrin-releasing peptide (GRP)-27, neuromedin B, and GRP-10 in rats. Both bombesin and GRP-27 are potent stimulants of gastrin and GIP release, whereas neuromedin B and GRP-10 are less effective, on a molar basis.  相似文献   

16.
Glucagon-like peptide-1(7-36)-amide (GLP-1) is postulated to act as a hormonal signal from gut to brain to inhibit food intake and gastric emptying. A mixed-nutrient meal produces a 2 to 3-h increase in plasma GLP-1. We determined the effects of intravenous infusions of GLP-1 on food intake, sham feeding, and gastric emptying in rats to assess whether GLP-1 inhibits food intake, in part, by slowing gastric emptying. A 3-h intravenous infusion of GLP-1 (0.5-170 pmol.kg(-1).min(-1)) at dark onset dose-dependently inhibited food intake in rats that were normally fed with a potency (mean effective dose) and efficacy (maximal % inhibition) of 23 pmol.kg(-1).min(-1) and 82%, respectively. Similar total doses of GLP-1 administered over a 15-min period were less potent and effective. In gastric emptying experiments, GLP-1 (1.7-50 pmol.kg(-1).min(-1)) dose-dependently inhibited gastric emptying of saline and ingested chow with potencies of 18 and 6 pmol.kg(-1).min(-1) and maximal inhibitions of 74 and 83%, respectively. In sham-feeding experiments, GLP-1 (5-50 pmol.kg(-1).min(-1)) dose-dependently reduced 15% aqueous sucrose intake in a similar manner when gastric cannulas were closed (real feeding) and open (sham feeding). These results demonstrate that intravenous infusions of GLP-1 dose-dependently inhibit food intake, sham feeding, and gastric emptying with a similar potency and efficacy. Thus GLP-1 may inhibit food intake in part by reducing gastric emptying, yet can also inhibit food intake independently of its action to reduce gastric emptying. It remains to be determined whether intravenous doses of GLP-1 that reproduce postprandial increases in plasma GLP-1 are sufficient to inhibit food intake and gastric emptying.  相似文献   

17.
Previous work from this laboratory has shown that the serotonin (5-HT) induced response is significantly augmented in differentiated NG108-15 (NG) cells treated with dibutyryl cAMP (Bt(2)cAMP) due to qualitative and quantitative changes in the expression of the 5-HT(3) receptor as demonstrated by specific [(3)H] LY-278584 (a selective 5HT(3) receptor antagonist) binding. In this study, we investigated whether there is any change in the relative expression of the 5-HT(3A) and 5-HT(3B) subunits in NG cells differentiated following Bt(2)cAMP treatment cells. The major findings of this study were that the relative amount of 5-HT(3B) subunit mRNA in Bt(2)cAMP-treated NG cells 5 days following Bt(2)cAMP-treatment was greater than that in the untreated cells. In contrast, the relative expression of the 5-HT(3B) subunit protein in the Bt(2)cAMP-treated NG cells was much less than in the untreated cells, but the relative expression of the 5-HT(3A) subunit in the Bt(2)cAMP-treated NG cells was similar to the untreated cells. Therefore, no relationship between mRNA and protein expression for 5-HT(3A) and 5-HT(3B) subunits in Bt(2)cAMP treated and untreated NG cells were observed. It was also found that fluorescent intensity for the 5-HT(3B) subunit in the cell body of the Bt(2)cAMP treated and untreated NG cells gradually decreased from the day 1-5 after Bt(2)cAMP treatment. However, in specific areas such as the varicosity and nerve endings of the Bt(2)cAMP treated cells, staining intensity for the 5-HT(3B) subunits was stronger than in the untreated cells at the all time points, peaking at day 5 post-treatment. These results suggest that the augmented response induced by 5-HT acting via 5-HT(3) receptors in differentiated NG cells may be due to changes in the relative amount of the 5-HT(3B) subunit, particularly the ratio and distribution of the 5-HT(3A) to (3B) subunits.  相似文献   

18.
19.
To determine the functional role for and the pharmacological specificity of developing gastrointestinal CCK receptors, in vitro pyloric contractility and autoradiographic CCK receptor binding were examined in pups aged 1–20 days. CCK contracted the gastroduodenal junction at all ages, while nonsulfated CCK-8 (d-CCK) was less potent. Autoradiographic studies revealed CCK binding localized to the gastroduodenal junction throughout development. MK-329, a specific type A CCK receptor antagonist, completely displaced 125I CCK-8 binding at all ages, while d-CCK displaced binding at ages at which d-CCK elicited gastroduodenal contractility. The results demonstrate a physiological role for and pharmacological specificity of neonatal gastroduodenal CCK receptors.  相似文献   

20.
The aspartic acid residue at the penultimate position is known to be essential for the hormonal activity of CCK and gastrin on gastric acid secretion. This residue was successively replaced by beta-aspartic acid, beta-alanine, and glutamic acid in the C-terminal heptapeptide of CCK 27-33. The analogues obtained were tested on rat gastric acid secretion and for recognition by gastrin receptors. The replacement by beta-aspartic or beta-alanine decreased gastric secretion and gastrin receptor recognition. In contrast, replacement by glutamic acid affected these two parameters less. The nature of the N-blocking group (Boc or Z) also influenced these activities, Boc derivatives being more potent than Z derivatives. The results were compared to those previously obtained on pancreatic secretion and on stimulation of gall bladder contraction where the modifications were found capable of differentiating between cholecystokinin, pancreozymin and gastrin activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号