首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
刘子凌  彭杰丽  李友国 《微生物学报》2016,56(12):1876-1882
【目的】研究华癸根瘤菌7653R中MCHK_0866和MCHK_0867编码的RND家族外排泵的功能表型。【方法】对外排泵编码基因及候选调控基因在基因组上的结构进行分析。采用测定OD_(600)观察菌株生长曲线的变化。通过测定最低抑菌浓度检测菌株的药物敏感性,RT-PCR检测目的基因经特定物质处理后表达量的变化。通过细菌单杂交系统初步检测外排泵的转录调控。【结果】MCHK_0866和MCHK_0867所编码蛋白共同组成一个RND家族射流泵。缺失该外排泵后,细菌生长曲线在稳定期OD_(600)数值降低,对萘啶酸、四环素和SDS的敏感性发生变化,萘啶酸处理细菌后2个基因的表达量增加。同时,下游属于Tet R转录因子家族的基因MCHK_0869表达产物作用于MCHK_0867的启动子区域。【结论】该外排泵与萘啶酸的运输有关,缺失后自身生长受到影响,表达受到下游转录因子的调控。  相似文献   

2.
Activity of enzymes of polyamine synthesis and contents of their products increased in E. coli cells in response to oxidative stress caused by addition of hydrogen peroxide to an exponentially growing culture. Putrescine and spermidine added to the culture medium in physiological concentrations significantly increased expression of genes oxyR and katG responsible for defense against oxidative stress, whereas cadaverine had no effect. The role of polyamines as modulators of the gene expression was confirmed by experiments with an inhibitor of polyamine synthesis, 1,3-diaminopropane, which decreased the level of cell polyamines and thus abolished the ability of the cell to induce oxyR expression under oxidative stress. A genetic method gave similar results: under oxidative stress mutants with disorders in polyamine synthesis displayed a significantly decreased level of induction of the oxyR and katG genes, and this level was recovered on addition of putrescine. In the presence of inhibitors of DNA-gyrase, nalidixic acid and novobiocin, the oxyR expression depended on the extent of DNA supercoiling. Putrescine decreased the inhibitory effects of nalidixic acid and novobiocin, and this confirmed its properties of a stimulator of DNA supercoiling. Resistance to rifampicin was studied to exemplify the mutation rate under oxidative stress. Putrescine decreased twofold the level of mutations and increased the number of viable cells in the culture exposed to oxidative stress.  相似文献   

3.
4.
Culturable counts of antibiotic resistant, genetically engineeredPseudomonas fluorescens were determined on antibiotic-containing plate count agar during starvation in water. Prior to starvation, colony counts obtained on all media separated into two groups. The mean of the colony counts on plate count agar with or without tetracycline (4.9 × 106 ml−1) was significantly higher than the mean colony counts on plate count agar containing either nalidixic acid or nalidixic acid plus tetraclycline (2.5×106 ml−1). After 20 days of starvation the highest mean colony counts continued to be obtained on plate count agar (7.2 × 106 ml−1) with slightly, but significantly, lower counts obtained on plate count agar containing either nalidixic acid (5.6 × 106 ml−1) or tetraclycline (1.5×106 ml−1). A combination of nalidixic acid and tetracycline in plate count agar, however, dramatically reduced colony counts (8.3 × 102 ml−1) after this starvation period. The addition of catalase to plate count agar containing nalidixic acid and tetracycline negated the effect caused by this combination of antibiotics. When colony counts obtained over the entire 20 day incubation were considered, the addition of MgSO4 to plate count agar containing nalidixic acid and tetracycline resulted in a significant increase in colony counts. Other combinations of antibiotics, nalidixic acid+carbenicillin, nalidixic acid+kanamycin, streptomycin+tetracycline, streptomycin+carbenicillin, rifampicin+tetracycline, rifampicin+carbenicillin, and rifampicin+kanamycin, did not inhibit colony formation of starved cells. Antibiotic resistant strains ofP. putida andEscherichia coli also displayed sensitivity to the combination of nalidixic acid and tetracycline in plate count agar after starvation.  相似文献   

5.
【目的】解析斑节对虾(Penaeus monodon)(非洲群体)(俗称“金刚虾”,以下同)携带耐药菌及耐药基因现状。【方法】本研究从山东滨州北海新区采集了金刚虾,对其肠道细菌常用抗生素的耐药菌性质及数量、占比及种类进行检测,通过荧光定量PCR技术分析肠道内容物样品中的4类抗生素的4种耐药性基因分布特征。【结果】肠道中可培养细菌总数约1.45×105–2.13×106 CFU/g,有四环素、萘啶酸、氟苯尼考、庆大霉素4种抗生素耐药菌的检出,其中喹诺酮类萘啶酸耐药菌占比最高,达到35.00%,氨基糖苷类庆大霉素占比最少。10种抗生素药敏性质分析表明,肠道可培养细菌对庆大霉素、氟苯尼考等6种抗生素高度敏感,对四环素、卡那霉素中度敏感,对萘啶酸、青霉素、阿莫西林耐药。从分离的耐药菌鉴定结果可以得出,可培养的抗生素耐药菌主要集中在弧菌属,基于属水平的不同抗生素耐药菌统计显示,不同抗生素耐药菌种类存在明显差异,且同一菌属有耐多种抗生素的情况。荧光定量PCR检测分析,4种耐药基因的丰度不同,tet A基因相对拷贝数和四环素耐药菌比例、floR基因和氟苯尼...  相似文献   

6.
A syringe-like type III secretion system (T3SS) plays essential roles in the pathogenicity of Ralstonia solanacearum, which is a causal agent of bacterial wilt disease on many plant species worldwide. Here, we characterized functional roles of a CysB regulator (RSc2427) in Rsolanacearum OE1-1 that was demonstrated to be responsible for cysteine synthesis, expression of the T3SS genes, and pathogenicity of Rsolanacearum. The cysB mutants were cysteine auxotrophs that failed to grow in minimal medium but grew slightly in host plants. Supplementary cysteine substantially restored the impaired growth of cysB mutants both in minimal medium and inside host plants. Genes of cysU and cysI regulons have been annotated to function for Rsolanacearum cysteine synthesis; CysB positively regulated expression of these genes. Moreover, CysB positively regulated expression of the T3SS genes both in vitro and in planta through the PrhG to HrpB pathway, whilst impaired expression of the T3SS genes in cysB mutants was independent of growth deficiency under nutrient-limited conditions. CysB was also demonstrated to be required for exopolysaccharide production and swimming motility, which contribute jointly to the host colonization and infection process of Rsolanacearum. Thus, CysB was identified here as a novel regulator on the T3SS expression in R. solanacearum. These results provide novel insights into understanding of various biological functions of CysB regulators and complex regulatory networks on the T3SS in R. solanacearum.  相似文献   

7.
Fluoroquinolones are an important class of wide‐spectrum antibacterial agents. The first quinolone described was nalidixic acid, which showed a narrow spectrum of activity. The evolution of quinolones to more potent molecules was based on changes at positions 1, 6, 7 and 8 of the chemical structure of nalidixic acid. Quinolones inhibit DNA gyrase and topoisomerase IV activities, two enzymes essential for bacteria viability. The acquisition of quinolone resistance is frequently related to (i) chromosomal mutations such as those in the genes encoding the A and B subunits of the protein targets (gyrA, gyrB, parC and parE), or mutations causing reduced drug accumulation, either by a decreased uptake or by an increased efflux, and (ii) quinolone resistance genes associated with plasmids have been also described, i.e. the qnr gene that encodes a pentapeptide, which blocks the action of quinolones on the DNA gyrase and topoisomerase IV; the aac(6)‐Ib‐cr gene that encodes an acetylase that modifies the amino group of the piperazin ring of the fluoroquinolones and efflux pump encoded by the qepA gene that decreases intracellular drug levels. These plasmid‐mediated mechanisms of resistance confer low levels of resistance but provide a favourable background in which selection of additional chromosomally encoded quinolone resistance mechanisms can occur.  相似文献   

8.
Twenty Salmonella Infantis strains resistant against kanamycin, tetracycline, neomycin, spectinomycin, sulphonamide, nalidixic acid and trimethoprim were selected for this study out of 103 Salmonella strains isolated from broiler samples collected from several markets in the Bolu and Ankara regions of Turkey. The resistance genes aadA1, aphA1, sul1, tet(A), dfrA5/dfrA14 and gyrA were determined for these multidrug-resistant S. Infantis strains. S. Infantis strains contained a mega plasmid with the molecular size of 206 kb. The strains were divided into three groups according to the pulsed field gel electrophoresis patterns of XbaI digested chromosomal DNA. A Ser83→Tyr83 point mutation was found in the gyrA gene of all quinolone-resistant isolates. Filter mating experiments showed that 206 kb plasmid transferred nalidixic acid resistance associated with class I integrons.  相似文献   

9.
Taurine is known to function as a protectant against various stresses in animal cells. In order to utilize taurine as a compatible solute for stress tolerance of yeast, isolation of cDNA clones for genes encoding enzymes involved in biosynthesis of taurine was attempted. Two types of cDNA clones corresponding to genes encoding cysteine dioxygenase (CDO1 and CDO2) and a cDNA clone for cysteine sulfinate decarboxylase (CSD) were isolated from Cyprinus carpio. Deduced amino acid sequences of the two CDOs and that of CSD showed high similarity to those of CDOs and those of CSDs from other organisms, respectively. The coding regions of CDO1, CDO2, and CSD were subcloned into an expression vector, pESC-TRP, for Saccharomyces cerevisiae. Furthermore, to enhance the efficiency of synthesis of taurine in S. cerevisiae, a CDOCSD fusion was designed and expressed. Expression of CDO and CSD proteins, or the CDO–CSD fusion protein was confirmed by Western blot analysis. HPLC analysis showed that the expression of the proteins led to enhancement of the accumulation level of hypotaurine, a precursor of taurine, rather than taurine. The yeast cells expressing corresponding genes showed tolerance to oxidative stress induced by menadione, but not to freezing–thawing stress.  相似文献   

10.
11.
The 12 histidine and four cysteine residues of the Fur repressor of Escherichia coli were changed, respectively, to leucine and serine by site-directed mutagenesis of the fur gene. The affects of these mutations were measured in vivo by ligation of the mutated genes to a wild-type fur promoter followed by measurement of the ability of these plasmids to regulate expression of a lacZ fusion in the aerobactin operon. In vitro affects were assayed by insertion of the mutated genes in the expression vector pMON2064 attended by isolation of the altered Fur proteins and appraisal of their capacity to bind to operator DNA. The results suggest that cysteine residues at positions 92 and 95 are important for the activity of the Fur protein.  相似文献   

12.
In a complex medium, cells of Photobacterium phosphoreum (strain 496) grow equally well with 1% and 3% NaCl, but luminescence occurs only with 3% NaCl in the medium. However, the suppression of luminescence is not attributable to the lack of luciferase; log phase cells growing in 1% NaCl will develop luminescence following a shift to 3% NaCl, which is accompanied by an increase of intracellular potassium. Tetradecanal stimulates bioluminescence in a 1% NaCl culture, and also in the presence of nalidixic acid, an inhibitor or gyrase. It is thus suggested that the suppression of luminescence in 1% NaCl or in 3% NaCl with nalidixic acid is due to a deficiency in the synthesis of intracellular aldehyde. The increase in intracellular potassium that occurs upon shifting from 1% to 3% NaCl may also relate to aldehyde synthesis gene expression via activation of gyrase, or via an increase in negative supercoiling of the chromosome. However, since an initial decrease of light intensity is still observed during culture even with the addition of tetradecanal, an additional factor related to cell density must also be involved in bioluminescence expression.Abbreviations nal nalidixic acid - nal-r nalidixic acid resistant strain  相似文献   

13.
Summary The addition of nalidixic acid to growing cells of the yeast Saccharomyces cerevisiae resulted in a transient depression in the rate of ribosomal precursor RNA production and a transient arrest of cells in G1. Protein synthesis rates were less affected. Lower concentrations of nalidixic acid also affected RNA synthesis and progression through G1 but had no effect on protein synthesis rates. We suggest that nalidixic acid has a primary effect on RNA synthesis leading to a G1 arrest.  相似文献   

14.
TheSalmonella typhimurium genes for serine acetyltransferase (cys E) and O-acetylserine sulphydrylase B (cys M) were isolated and characterized in order to express these as transgenes in sheep to establish a cysteine biosynthesis pathway and, thereby, to achieve an increased rate of wool growth. Comparison of theS. typhimurium andEscherichia coli genes showed considerable homology, both at the nucleotide and amino acid sequence levels. Thein vitro andin vivo expression studies showed that both genes could be transcribed and translated in eukaryotic cells and that their products could function as active enzymes. Thecys M gene ofS. typhimurium possessed a GUG initiation codon, like itsE. coli counterpart, but translation could be initiated using this codon in eukaryotic cells to give an active enzyme product. Chinese hamster ovary cells, stably transfected with a tandem arrangement of the two genes, showed a capacity to synthesize cysteinein vivo, indicating the establishment of a cysteine biosynthesis pathway in these cells. The measured levels of activity of the gene products suggest that improved wool growth is possible by transgenesis of sheep with these genes.  相似文献   

15.
Summary The alleviation of K-specific DNA restriction after treatment of cells by UV or nalidixic acid has been studied in mutants with various alleles of recA and lexA and combinations of these alleles and with recB and recF mutations. The studies show that induction of restriction alleviation by UV or nalidixic acid is abolished in mutants in which the recA protein is defective (recA13, recA56), its protease activity is altered (recA430) or in which it cannot be efficiently activated (recA142). Thermoinduction of restriction alleviation was observed in tif mutant (recA441). In lexA amber mutants restriction alleviation is not constitutive but is still inducible. In a lexA3 mutant restriction alleviation is inducible by nalidixic acid provided that recA protein is overproduced as a result of a recA operator mutation. Induction by UV depends on the recF function and an unidentified function (Y) which is controlled by the lexA protein. The recBC enzyme is necessary for induction by UV or by nalidixic acid. Temperature shift experiments with a thermosensitive recB mutant indicate that the recBC enzyme functions in an early step during UV-induction. It is concluded that the damage-inducible function which alleviates restriction is similar to other damage inducible repair (SOS) functions in the dependence on activated recA protease for induction, but that it differs from these functions by the absence of a direct control through the lexA repressor.  相似文献   

16.
It is possible to improve wool growth through increasing the supply of cysteine available for protein synthesis and cell division in the wool follicle. As mammals can only synthesis cysteine indirectly from methionine via trans-sulphuration, expression of transgenes encoding microbial cysteine biosynthesis enzymes could provide a more efficient pathway to cysteine synthesis in the sheep. If expressed in the rumen epithelium, the abundant sulphide, produced by ruminal microorganisms and normally excreted, could be captured for conversion to cysteine. This paper describes the characterisation of expression of the cysteine biosynthesis genes ofSalmonella typhimurium, cysE,cysM andcysK, and linkedcysEM,cysME andcysKE genes as transgenes in mice and sheep. The linked transgenes were constructed with each gene driven by a separate promoter, either with the Rous sarcoma virus long terminal repeat (RSVLTR) promoter or the mouse phosphoglycerate kinase-1 (mPgk-1) promoter, and with human growth hormone (hGH) polyadenylation sequences. Transgenesis of mice with the RSVLTR-cysE gene afforded tissue-specific, heritable expression of the gene. Despite high levels of expression in a number of tissues, extremely low levels of expression occurred in the stomach and small intestine. Results of a concurrent sheep transgenesis experiment using the RSVLTR-cysEM and-cysME linked transgenes revealed that the RSVLTR promoter was inadequate for expression in the rumen. Moreover, instability of transgenes containing the RSVLTR sequence was observed. Expression of mPgk-cysME and-cysKE linked transgenes in most tissues of the mice examined, including the stomach and small intestine, suggested this promoter to be a better candidate for expression of these transgenes in the analogous tissues of sheep. However, a subsequent sheep transgenesis experiment indicated that use of the mPgk-1 promoter, active ubiquitously and early in development, may be inappropriate for expression of the cysteine biosynthesis transgenes. In summary, these results indicate that enzymically active bacterial cysteine biosynthesis gene products can be coexpressed in mammalian cellsin vivo but that expression of the genes should be spatio-temporally restricted to the adult sheep rumen epithelium.  相似文献   

17.
Homologous matings with plasmids R68.45 and pULB113, and also with Hfr type donor were employed for mapping pgi and gpd genes involved in C-1 metabolism in the obligate methylotroph Methylobacillus flagellatum. A preliminary map of the late chromosomal region was constructed on the basis of these experimental results. The C-1 markers were linked to methionine and leucine auxotrophy and nalidixic acid resistance markers. The phenomenon of retrotransfer, or shuttle transfer of chromosomal markers by Inc P1 plasmids, revealed earlier, was demonstrated for M. flagellatum.  相似文献   

18.
The barley cysteine proteinase B (EPB) is the main protease responsible for the degradation of endosperm storage proteins providing nitrogenous nutrients to support the growth of young seedlings. The expression of this enzyme is induced in the germinating seeds by the phytohormone, gibberellin, and suppressed by another phytohormone, abscisic acid. In situ hybridization experiments indicate that EPB is expressed in the scutellar epithelium within 24 h of seed germination, but the aleurone tissue surrounding the starchy endosperm eventually becomes the main tissue expressing this enzyme. The EPB gene family of barley consists of two very similar genes, EPB1 and EPB2, both of which have been mapped to chromosome 3. The sequences of EPB1 and EPB2 match with the two previously published cDNA clones indicating that both genes are expressed. Interestingly, neither of these genes contain any introns, a rare phenomenon in which all members of a small gene family are active intronless genes. Sequence comparison indicates that the barley EPB family can be classified as cathepsin L-like endopeptidases and is most closely related to two legume cysteine proteinases (Phaseolus vulgaris EP-C1 and Vigna mungo SHEP) which are also involved in seed storage protein degradation. The promoters of EPB1 and EPB2 have been linked to the coding sequence of a reporter gene, GUS, encoding -glucuronidase, and introduced into barley aleurone cells using the particle bombardment method. Transient expression studies indicate that EPB promoters are sufficient to confer the hormonal regulation of these genes.  相似文献   

19.
20.
Salmonella typhimurium thermotolerant mutants dependent on the presence of nalidixic acid for growth at 48°C were isolated and designated nalidixic acid-dependent, thermotolerant mutants,nal d ttl. Genetic mapping revealed thatnal d ttl alleles map within thegyrA gene. WhenS. typhimurium strain Q was plated in the dark on nutrient agar containing nalidixic acid (20 g/ml) as a photosensitizer and briefly exposed to white light or near VU light prior to incubation at 42°C, nalidixic acid-resistant mutants arose in about 16 h at frequencies of 5×10–8 for white light and 1×10–6 for near UV light. About 10% of these nalidixic acid-resistant mutants derived from photodynamic mutagenesis exhibited the thermotolerant characteristic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号