首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Weber  R S Lee  E Grell  A E Senior 《Biochemistry》1992,31(22):5112-5116
(1) Previous mutational analyses have shown that residue beta R398 of the beta-subunit is a key residue for binding of the inhibitory antibiotic aurovertin to Escherichia coli F1Fo-ATP synthase. Here, we studied purified F1 from the beta R398C and beta R398W mutants. ATPase activity in both cases was resistant to aurovertin inhibition. The fluorescence spectrum (lambda exc = 278 or 295 nm) of beta R398W F1 showed a significant red-shift as compared to wild-type and beta R398C enzymes, indicating that residue beta R398 lies in a polar environment. On the basis of this and previous evidence, we propose that aurovertin binding to F1-ATPase involves a specific charged donor-acceptor H-bond between residue beta R398 and the 7-hydroxyl group of aurovertin. (2) The fluorescent substrate analog lin-benzo-ADP was shown to bind to beta R398W F1 catalytic sites with the same Kd values as to wild-type F1, and with the same quenching of the fluorescence of the analog. Fluorescence energy transfer was seen between the beta R398W residue and bound lin-benzo-ADP. Analysis of transfer efficiency at varying stoichiometry of bound lin-benzo-ADP showed that interaction occurred between one beta R398W residue and one catalytic-site-bound analog molecule at a distance of approximately 23 A. The relationships of the aurovertin and catalytic sites in the primary and tertiary structure are discussed.  相似文献   

2.
(1) We constructed Escherichia coli strain JP17 with a deletion in the ATP synthase beta-subunit gene. JP17 is completely deficient in ATP synthase activity and expresses no beta-subunit. Expression of normal beta-subunit from a plasmid restores haploid levels of ATP synthase in membranes. JP17 was shown to be efficacious for studies of beta-subunit mutations. Site-directed mutants were studied directly in JP17. Randomly generated chromosomal mutants were identified by PCR and DNA sequencing, cloned, and expressed in JP17. (2) Eight novel mutations occurring within the putative catalytic nucleotide-binding domain were characterized with respect to their effects on catalysis and structure. The mutations beta C137S, beta G152D, beta G152R, beta E161Q, beta E161R, and beta G251D each impaired catalysis without affecting enzyme assembly or oligomeric structure and are of interest for future studies of catalytic mechanism. The mutations beta D301V and beta D302V, involving strongly conserved carboxyl residues, caused oligomeric instability of F1. However, growth characteristics of these mutants suggested that neither carboxyl side chain is critical for catalysis. (3) The mutations beta R398C and beta R398W rendered ATP synthase resistant to aurovertin, giving strong support to the view that beta R398 is a key residue in the aurovertin-binding site. Neither beta R398C or beta R398W impaired catalysis significantly.  相似文献   

3.
Isolated beta subunit of ATPase (F1) from yeast mitochondria does not catalyze an ATPase reaction but still binds the specific F1 inhibitor aurovertin. Binding was measured by enhancement of aurovertin fluorescence; it was as tight as that to F1-ATPase. No binding was observed with F1 or with isolated beta subunit from a single-gene nuclear yeast mutant whose F1-ATPase was resistant to aurovertin.  相似文献   

4.
(1) Trisbathophenanthroline-Fe2+ (BPh3Fe2+)alters the hyperbolic relationship between concentration of ATP and reaction velocity of F1-ATPase to sigmoidal, with a simultaneous decrease in maximal velocity. (2) BPh3Fe2+ binds to the beta-subunit of F1 and competes with the binding of aurovertin. The reversal of this effect uncouplers in enhanced by ADP and diminished by ATP. BPh3Fe2+ also changes the hyperbolic concentration dependence of aurovertin binding to sigmoidal. (3) BPh3Fe2+ stabilizes F1 against the cold inactivation and cold dissociation in an uncoupler-reversible manner. (4) BPh3Fe2+ efficiently protects F1 against the light-induced inactivation occurring in the presence of Rose Bengal, and the effect is reversed by uncouplers. (5) The results are discussed in relation to the reaction mechanism of F1-ATPase and other enzymes catalyzing the reversible hydrolysis of pyrophosphate bonds.  相似文献   

5.
We have isolated a cDNA clone encoding the precursor of the beta-subunit of the bovine heart mitochondrial F1-ATPase. Two probes were used to isolate this precursor from a bovine heart cDNA library. One probe was a mixed-sequence oligonucleotide directed against a portion of the amino acid sequence of the mature protein, and the other probe was the F1-ATPase beta-subunit gene from Saccharomyces cerevisiae. Determination of the nucleotide sequence of this cDNA reveals that it contains a 1584-nucleotide-long open reading frame that encodes the complete mature beta-subunit protein and a 48 amino acid long NH2-terminal extension. This amino-terminal presequence contains four basic arginine residues, one acidic glutamic acid residue, four polar uncharged serine residues, and five proline residues. Southern blot hybridization analyses suggest that the bovine F1-ATPase beta-subunit precursor is encoded by a single genetic locus. RNA blot hybridization analyses reveal a single mRNA species of approximately 1.9 kilobases from both bovine liver and heart.  相似文献   

6.
The yeast nuclear gene ATP2 encodes a F1-ATPase beta-subunit protein of 509 amino acids with a predicted mass of 54,575 daltons. In contrast to the ATPase beta-subunit proteins determined previously from Escherichia coli and various plant sources, the yeast mitochondrial precursor peptide contains a unique cysteine residue within its immediate amino terminus. Expression of an in-frame deletion in ATP2 between residues 28 and 34 to eliminate this single cysteine residue located near the processing site of the matrix protease does not prevent the in vivo delivery of the subunit to mitochondria or its assembly into a functional ATPase complex. Thus, the import F1 beta-subunit into mitochondria does not require a covalent modification of the type utilized for the secretion of the major lipoprotein from E. coli. In addition, analysis of the level of the major F1-ATPase subunits in mitochondria prepared from an atp2- disruption mutant demonstrates that the in vivo import of these catalytic subunits is not dependent on each other. These data and additional studies, therefore, suggest that the determinants for mitochondrial delivery reside within the amino terminus of the individual precursors.  相似文献   

7.
1. The isolation of the mitochondrial ATPase F1 and its beta-subunit from commercial baker's yeast (Saccharomyces cerevisiae) is described. 2. The molecular weight determined by ultracentrifugation is 340000 +/- 30000. Gel chromatography indicates a molecular weight of 300000 +/- 20000. 3. Fluorimetric titration of the isolated enzyme with aurovertin reveals two binding sites per molecule. The isolated beta-subunit binds aurovertin in a 1 : 1 stoicheiometry. It is concluded that the ATPase molecule contains two aurovertin-binding beta-subunits. 4. The stabilizing agent methanol influences both the measured Kd and the concentration of binding sites for aurovertin. These results fit a model in which both F1 and aurovertin are distributed between aqueous and methanol phases. 5. The effect of methanol on the ATPase activity can be described in terms of the model proposed by Recktenwald and Hess (Recktenwald, D. and Hess, B. (1977) FEBS Lett. 76, 25-28). It is proposed that methanol enhances the affinity of the regulatory site for ATP, but at higher concentrations prevents the interaction between the regulatory and catalytic sites. 6. Since HSO(-3), a typical effector of the assumed regulatory site of F1, has no effect on the binding of aurovertin, it is concluded that the binding site of aurovertin is not correlated with the regulatory site. 7. The inhibition of ATPase activity by aurovertin is slowly (t 1/2 = 70 s) induced during turnover conditions. 8. From the effect of methanol on the inhibition of ATPase activity by aurovertin it is concluded that under turnover conditions the conformation is such that the aurovertin-binding sites have a 6-fold higher affinity for methanol than under resting conditions.  相似文献   

8.
The functional role of essential residue alpha-Arg-376 in the catalytic site of F1-ATPase was studied. The mutants alpha R376C, alpha R376Q, and alpha R376K were constructed, and combined with the mutation beta Y331W, to investigate catalytic site nucleotide-binding parameters, and to assess catalytic transition state formation by measurement of MgADP-fluoroaluminate binding. Each mutation caused large impairment of ATP synthesis and hydrolysis. Despite the apparent proximity of alpha-Arg-376 to bound nucleoside di- and triphosphate in published X-ray structures, the mutations had little effect on MgADP or MgATP binding affinities, particularly at the highest affinity catalytic site, site 1. Both Cys and Gln mutants abolished transition state formation, demonstrating that alpha-Arg-376 is normally involved at this step of catalysis. A model of the F1-ATPase catalytic transition state structure is presented and discussed. The Lys mutant, although severely impaired, supported transition state formation, suggesting that an additional essential role for the alpha-Arg-376 guanidinium group exists, likely in alpha/beta conformational signal transmission required for steady-state catalysis. Parallels between alpha-Arg-376 and GAP/G-protein "arginine finger" residues are evident.  相似文献   

9.
A single gene nuclear yeast mutant was isolated whose mitochondrial F1-ATPase was resistant to the specific F1 inhibitor aurovertin. The mutant enzyme was not cross-resistant to other F1 inhibitors. The binding of aurovertin to F1 and to the two largest F1 subunits (alpha and beta) was measured by enhancement of aurovertin fluorescence. Aurovertin bound to wild type F1-ATPase and to its monomeric beta subunit with about the same binding constant. It failed to bind to wild type alpha subunit or to either F1 or F1 subunits from the mutant. The aurovertin-resistant mutant thus contains an altered nuclear gene which specifies the structure of the beta subunit of F1.  相似文献   

10.
Properties of purified F1-ATPase from Escherichia coli mutant strain AN484 (uncD412) have been studied in an attempt to understand why the amino acid substitution in the beta-subunit of this enzyme causes a tenfold reduction from normal MgATP hydrolysis rate. In most properties that were studied, uncD412 F1-ATPase resembled normal E. coli F1-ATPase. Both enzymes were found to contain a total of six adenine-nucleotide-binding sites, of which three were found to be non-exchangeable and three were exchangeable (catalytic) sites. Binding of the non-hydrolysable substrate analogue adenosine 5'-[beta gamma-imido]triphosphate (p[NH]ppA) to the three exchangeable sites showed apparent negative co-operativity. The binding affinities for p[NH]ppA, and also ADP, at the exchangeable sites were similar in the two enzymes. Both enzymes were inhibited by efrapeptin, aurovertin and p[NH]ppA, and were inactivated by dicyclohexylcarbodi-imide, 4-chloro-7-nitrobenzofurazan and p-fluorosulphonyl-benzoyl-5'-adenosine. Km values for CaATP and MgATP were similar in the two enzymes. uncD412 F1-ATPase was abnormally unstable at high pH, and dissociated into subunits readily with consequent loss of activity. The reason for the impairment of catalysis in uncD412 F1-ATPase cannot be stated with certainty from these studies. However we discuss the possibility that the mutation interrupts subunit interaction, thereby causing a partial impairment in the site-site co-operativity which is required for 'promotion' of catalysis in this enzyme.  相似文献   

11.
The epsilon subunit of Escherichia coli F1-ATPase is a tightly bound but dissociable partial inhibitor of ATPase activity. The effects of epsilon on the enzyme were investigated by comparing the ATPase activity and aurovertin binding properties of the epsilon-depleted F1-ATPase and the epsilon-replete complex. Kinetic data of multisite ATP hydrolysis were analyzed to give the best fit for one, two, or three kinetic components. Each form of F1-ATPase contained a high-affinity component, with a Km near 20 microM and a velocity of approximately 1 unit/mg. Each also exhibited a component with a Km in the range of 0.2 mM. The velocity of this component was 25 units/mg for epsilon-depleted ATPase but only 4 units/mg for epsilon-replete enzyme. The epsilon-depleted enzyme also contained a very low affinity component not present in the epsilon-replete enzyme. In unisite hydrolysis studies, epsilon had no effect on the equilibrium between substrate ATP and product ADP.P1 at the active site but reduced the rate of product release 15-fold. These results suggest that epsilon subunit slows a conformational change that is required to reduce the affinity at the active site, allowing dissociation of product. It is suggested that inhibition of multisite hydrolysis by epsilon is also due to a reduced rate of product release. epsilon-depleted F1-ATPase showed little of no modulation of aurovertin fluorescence by added ADP and ATP. Aurovertin fluorescence titrations in buffer containing ethylenediaminetetraacetic acid (EDTA) revealed that epsilon-depleted enzyme had high affinity for aurovertin (Kd less than 0.1 microM) regardless of the presence of nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The rate of ATP hydrolysis under multi- and unisite conditions was determined in the native F1-inhibitor protein complex of bovine heart mitochondria (Adolfsen, R., MacClung, J.A., and Moudrianakis, E.N. (1975) Biochemistry 14, 1727-1735). Aurovertin was used to distinguish between hydrolytic activity catalyzed by the F1-ATPase or the F1-inhibitor protein (F1.I) complex. We found that incubation of aurovertin with the F1.I complex, prior to the addition of substrate, results in a stimulation of the hydrolytic activity from 1 to 8-10 mumol min-1 mg-1. The addition of aurovertin to a F1.I complex simultaneously with ATP results in a 30% inhibition with respect to the untreated F1.I. In contrast, if the F1.I complex is activated up to a hydrolytic activity of 80 mumol min-1 mg-1, aurovertin inhibits the enzyme in a manner similar to that described for F1-ATPase devoid of the inhibitor protein. The native F1.I complex catalyzes the hydrolysis of ATP under conditions for single catalytic site, liberating 0.16-0.18 mol of Pi/mol of enzyme. Preincubation with aurovertin before the addition of substrate had no effect under these conditions. On the other hand, if the F1.I ATPase was allowed to hydrolyze ATP at a single catalytic site, catalysis was inhibited by 98% by aurovertin. In F1-ATPase, the hydrolysis of [gamma-32P]ATP bound to the first catalytic site is promoted by the addition of excess ATP, in the presence or absence of aurovertin. Under conditions for single site catalysis, hydrolysis of [gamma-32P]ATP in the F1.I complex was not promoted by excess ATP. We conclude that the endogenous inhibitor protein regulates catalysis by promoting the entrapment of adenine nucleotides at the high affinity catalytic site, thus hindering cooperative ATP hydrolysis.  相似文献   

13.
(1) The concentration of aurovertin-binding sites calculated from fluorimetric titrations of submitochondrial particles is equal to the F1 concentration, calculated from the concentration of F1-binding sites in stripped particles. (2) Direct binding experiments show that the fluorescence enhancement of aurovertin bound to submitochondrial particles and the isolated ATPase complex is less (or absent) at higher concentrations than at lower concentrations. The binding data can be described by 'specific' and 'non-specific' binding. The concentration of the 'specific' sites is twice that derived from fluorimetric titrations. (3) After dissociation of the bound F1 with LiCl, fluorimetric titrations with aurovertin yield linear Scatchard plots. The fluorescence enhancement and KD are equal to those of the beta-subunit-aurovertin complex. The concentration of beta-subunits is double the concentration of F1. (4) It is concluded that both for submitochondrial particles and the isolated ATPase complex the most reliable and simple way to determine the F1 content is to dissociate the F1 with LiCl, spin down the insoluble material and titrate the supernatant (containing free beta-subunit) with aurovertin.  相似文献   

14.
Duby G  Degand H  Boutry M 《FEBS letters》2001,505(3):409-413
We sought to determine the structural features involved in the processing of the mitochondrial F1-ATPase beta-subunit (F1beta) presequence (54 residues) from Nicotiana plumbaginifolia. The cleavage efficiency of F1beta presequence mutants linked to the green fluorescent protein (GFP) was evaluated in vivo in tobacco by in situ microscopy and Western blotting. The residue at position -1 (Tyr) was required to be an aromatic residue and the residue at position +2 (Thr) was found to be important for F1beta processing, while, unexpectedly, changing the distal (Arg-15) and proximal (Arg-5) arginine residues did not strongly reduce processing. In addition, results also supported the requirement of a helical structure around the cleavage position. Sequencing of the mature form of a precursor containing the first 30 residues of the F1beta presequence linked to GFP revealed the presence of a cryptic cleavage site between residues 26 and 27, which showed the features of a classical mitochondrial processing site, suggesting dual processing of the F1beta presequence. In vitro processing confirmed these data and showed that processing was sensitive to o-phenanthroline, thus catalyzed by mitochondrial processing peptidase.  相似文献   

15.
Escherichia coli strain AN718 contains the alpha S373F mutation in F1F0-ATP synthase which blocks ATP synthesis (oxidative phosphorylation) and steady-state F1-ATPase activity. The revertant strain AN718SS2 containing the mutation alpha C373 was isolated and shown to confer a phenotype of higher growth yield than that of the wild type in liquid medium containing limiting glucose, succinate, or LB. Purified F1 from strain AN718SS2 was found to have 30% of wild-type steady-state ATPase activity and 60% of wild-type oxidative phosphorylation activity. Azide sensitivity of ATPase activity and ADP-induced enhancement of bound aurovertin fluorescence, both of which are lost in alpha S373F mutant F1, were regained in alpha C373 F1. N-Ethylmaleimide (NEM) inactivated alpha C373 F1 steady-state ATPase potently but had no effect on unisite ATPase. Complete inactivation of alpha C373 F1 steady-state ATPase corresponded to incorporation of one NEM per F1 (mol/mol), in just one of the three alpha subunits. NEM-inactivated enzyme showed azide-insensitive residual ATPase activity and loss of ADP-induced enhancement of bound aurovertin fluorescence. The data confirm the view that placement at residue alpha 373 of a bulky amino acid side-chain (phenylalanyl or NEM-derivatized cysteinyl) blocks positive catalytic cooperativity in F1. The fact that NEM inhibits steady-state ATPase when only one alpha subunit of three is reacted suggests a cyclical catalytic mechanism.  相似文献   

16.
The mitochondrial ATPase is rapidly inactivated by the arginine selective reagent phenylglyoxal. Recently, the purported major reacting residue has been reported for the chloroplast enzyme (Viale, A. M., and Vallejos, R. H. (1985) J. Biol. Chem. 260, 4958-4962) corresponding to Arg-328 in the beta-subunit of the yeast Saccharomyces cerevisiae mitochondrial ATPase, a highly conserved residue in the ATPase. This arginine residue was concluded to be in the active site of the ATPase and possibly involved in the binding of nucleotides. To test this hypothesis, site-directed mutagenesis of the yeast enzyme has been used to replace Arg-328 with alanine and lysine. The modified genes were transformed into a yeast strain, DMY111, which contained a null mutation in the gene coding for the beta-subunit of the ATPase. Both of the substitutions were functional in vivo as demonstrated by the ability of yeast transformants to grow on a nonfermentable carbon source. The water soluble F1-ATPase with Ala-328 and Lys-328 were extremely unstable, but could be stabilized with glycerol. The rate of enzymatic decay followed first order kinetics with half-lives of 1.1 and 4.0 min for the mutants with Ala-328 and Lys-328 in 10% and 5% glycerol, respectively, while the wild type enzyme was stable even in the absence of glycerol. Kinetic analysis of both ATPase and GTPase has been determined. The wild type enzyme had two observable apparent Km and Vmax values for ATPase which were 0.056 mM-1 and 67 units/min/mg and 0.140 mM-1 and 100 units/min/mg. The mutant enzyme containing Lys-328 showed similar kinetic values of 0.066 mM-1 and 23 units/min/mg and 0.300 mM-1 and 43 units/min/mg. The mutant enzyme containing Ala-328, however, only demonstrated a single site with values of 0.121 mM-1 and 45 units/min/mg. In contrast to ATPase activity, kinetic values for GTPase were nearly identical for the wild type and mutant enzymes. Opposite to predicted results, the mutant enzymes were more sensitive to the reagent phenylglyoxal. These results indicate that Arg-328 is important for protein stability, but not involved in catalysis.  相似文献   

17.
Previous work has shown that mild trypsin treatment eliminates energy-transduction capability and tight (non-exchangeable)nucleotide binding in beef heart mitochondrial F1-ATPase (Leimgruber, R.M. and Senior, A.E. (1976) J. Biol. Chem. 251, 7103-7109). The structural change brought about by trypsin was, however, too subtle to be identified by one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, and was not defined. In this work we have applied two-dimensional electrophoresis (isoelectric focussing then sodium dodecyl sulfate polyacrylamide gradient electrophoresis) to the problem, and have determined that the alpha-subunit of F1 is altered by the mild trypsin treatment, whereas no change was detected in beta-, gamma-, delta- or epsilon-subunits. Binding of ADP to the trypsin-treated F1 was compared to binding to control enzyme over a range of 0-40 muM ADP in a 30 min incubation period. There was no difference between the two enzymes, KADPd in Mg2+ -containing buffer was about 2 muM in each. Since the tight (nonexchangeable)sites are abolished in trypsin-treated F1, this shows that tight exchangeable ADP-binding sites are different from the tight nonexchangeable ADP-binding sites. There was no effect of trypsin cleavage of the alpha-subunit on beta-subunit conformation as judged by aurovertin fluorescence studies. The cleavage of the alpha-subunit which occurred was judged to occur very close to the C- or N-terminus of the subunit and constitutes therefore a small and specific chemical modification which abolishes overall function in F1 but leaves partial functions intact.  相似文献   

18.
Previous studies in which dicyclohexylcarbodiimide (DCCD) was used to inactivate F1-ATPase enzymes have suggested that two glutamate residues in the beta-subunit are essential for catalysis. In the Escherichia coli F1-ATPase, these are residues beta-Glu-181 and beta-Glu-192. Oligonucleotide-directed mutagenesis was used to change these residues to beta-Gln-181 and beta-Gln-192. The beta-Gln-181 mutation produced strong impairment of oxidative phosphorylation in vivo and also of ATPase and ATP-driven proton-pumping activities in membranes assayed in vitro. A low level of each activity was detected and an F1-ATPase appeared to be assembled normally on the membranes. Therefore, it is suggested that the carboxyl side chain at residue beta-181 is important, although not absolutely required, for catalysis in both directions on E. coli F1-ATPase. The beta-Gln-192 mutation produced partial inhibition of oxidative phosphorylation in vivo and membrane ATPase activity was reduced by 78%. These results contrast with the complete or near-complete inactivation seen when E. coli F1-ATPase is reacted with DCCD and imply that DCCD-inactivation is attributable more to the attachment of the bulky DCCD molecule than to the derivatization of the carboxyl side chain of residue beta-Glu-192. M. Ohtsubo and colleagues (Biochem. Biophys. Res. Commun. (1987) 146, 705-710) described mutagenesis of the F1-beta-subunit of thermophilic bacterium PS3. Mutations (Glu----Gln) of the residues homologous to Glu-181 and Glu-192 of E. coli F1-beta-subunit both caused total inhibition of ATPase activity. Therefore, there was a marked difference in results obtained when the same residues were modified in the PS3 and E. coli F1-beta-subunits.  相似文献   

19.
The beta-subunit of the mitochondrial F1-ATPase is synthesized as a precursor in the cytoplasm which is delivered through two bilayers bounding the mitochondria prior to its assembly with other proteins into a functional complex. In order to determine the role of the amino-terminal 50 residues of the precursor on its localization, maturation, and assembly, a set of deletions within this region of the ATP2 gene encoding the beta-subunit has been analyzed. These studies reveal that deletions between residue 10 of the F1 beta-presequence and residue 36 can still direct in vivo mitochondrial import and assembly of the mutant subunit into a functional complex. Deletions within ATP2 which contain less than the first 10 residues of the precursor are not imported. Thus, the extreme amino terminus (about half of the transient presequence) of the F1 beta-subunit can direct its mitochondrial import. The wild-type F1 beta-subunit precursor is matured by the matrix-located metalloprotease at Lys19-Gln20; however, small in-frame deletions up to 17 residues distal to this site fail to be matured either in vitro or in vivo. This nonmatured F1 beta-subunit is also assembled into a functional enzyme and supports growth of its host on a nonfermentable carbon source. These data indicate that maturation of the F1 beta-subunit precursor is dependent on a protein sequence located distal to the proteolytic maturation site which is distinct from the mitochondrial targeting sequence.  相似文献   

20.
Hsp90, a dimeric ATP-dependent molecular chaperone, is required for the folding and activation of numerous essential substrate "client" proteins including nuclear receptors, cell cycle kinases, and telomerase. Fundamental to its mechanism is an ensemble of dramatically different conformational states that result from nucleotide binding and hydrolysis and distinct sets of interdomain interactions. Previous structural and biochemical work identified a conserved arginine residue (R380 in yeast) in the Hsp90 middle domain (MD) that is required for wild type hydrolysis activity in yeast, and hence proposed to be a catalytic residue. As part of our investigations on the origins of species-specific differences in Hsp90 conformational dynamics we probed the role of this MD arginine in bacterial, yeast, and human Hsp90s using a combination of structural and functional approaches. While the R380A mutation compromised ATPase activity in all three homologs, the impact on ATPase activity was both variable and much more modest (2-7 fold) than the mutation of an active site glutamate (40 fold) known to be required for hydrolysis. Single particle electron microscopy and small-angle X-ray scattering revealed that, for all Hsp90s, mutation of this arginine abrogated the ability to form the closed "ATP" conformational state in response to AMPPNP binding. Taken together with previous mutagenesis data exploring intra- and intermonomer interactions, these new data suggest that R380 does not directly participate in the hydrolysis reaction as a catalytic residue, but instead acts as an ATP-sensor to stabilize an NTD-MD conformation required for efficient ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号