首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diffusive conductance (Cs) of rice (Oryza sativa cvs Jaya and Bala) leaves was measured during a soil drying cycle from flooding to decreasing soil water potential (φs) in a controlled-environment chamber. Plants were grown continuously under 5 cm submergence up to 69 days after transplanting and thereafter were subjected to gradual soil drying for a period of 17 days in the vegetative growth stage. In both the cultivars, the values of Cs were generally more on adaxial than abaxial leaf surfaces. This response of stomata during the period of soil drying was independent of leaf rolling. Further, the slopes of the curves (Cs, vs φs) also did not differ significantly (P= 0·05). The total Cs, of both cultivars during flooding was almost equal (0·60 cm s-1) but at the end of the soil drying cycle, the values of total Cs, were 0·11 cm s-l at ψs of -1·3 MPa and 0·08 cm s-1 at ψs, of -0·8 MPa in cvs Jaya and Bala, respectively. For total Cs, slopes differed significantly (P = 0·05). A close relationship between total Cs, and ψs, in both cultivars (Cs, = 0·58-0·40 ψs, for cv. Jaya and Cs= 0·46-0·56 ψs, for cv. Bala) indicated that stomata were sensitive to increasing soil water deficit.  相似文献   

2.
The senescence pattern of the three uppermost leaves of four rice (Oryza sativa L.) cultivars viz. Ratna, Jaya, Masuri and Kalojira was analysed in terms of decline of chlorophyll and by measuring [32P]-phosphate retention and export from leaf to grains during the reproductive development. With the advancement of reproductive development, the cultivars Masuri and Kalojira showed a sequential mode of senescence, but the cultivars Ratna and Jaya showed a non-sequential mode of leaf senescence where the flag leaf senesced earlier than the older second leaf. Foliar spraying with benzyladenine (0.5 mM) significantly delayed, and abscisic acid (0.1 mM) accelerated, leaf senescence. In untreated control plants, the second leaf had the highest export of labelled phosphate among the leaves at the grain formation stage (0–7 days) in Masuri and Kalojira. This was compensated by the flag leaf at the grain development stage (7–14 days), whereas export of [32P]-phosphate was highest from the flag leaf of Ratna and Jaya at the grain development stage. Compared with the control, benzyladenine treatment caused higher retention of [32P]-phosphate in the leaves and also export to the grains, but abscisic acid treatment gave lower retention and export of [32P]-phosphate to the grains. The amount of [32P]-phosphate export from a mother to a daughter shoot developed in the axil of the second leaf of plants with the panicle removed, was less than that to panicles remaining on control plants of all cultivars. When the panicle had been excised, the greatest export of [32P]-phosphate took place from the second leaf to the daughter shoot in all cultivars. Excision of the panicle delayed leaf senescence as compared with intact controls and maintained an age-related leaf senescence pattern in all the four cultivars. The results presented here demonstrate that mobilization of phosphorus from leaf to grains, regardless of cultivar or age and position of the leaf, correlates well with the senescence of that leaf.  相似文献   

3.
Temporal variations in the δ18 oxygen (δ18O) content of water transpired by leaves during a simulated diurnal cycle fluctuated around the δ18O content of the source water. Reconstructed variations in the δ18O values of leaf water differed markedly from those predicted by conventional models. Even when transpiring leaves were maintained under constant conditions for at least 3 h, strict isotopic steady-state conditions of leaf water (equality of the 18O/16O ratios in the input and transpired water) were rarely attained in a variety of plant species (Citrus reticu-lata, Citrus paradisi, Gossypium hirsutum, Helianthus annuns, Musa musaceae and Nicotinia tabacum). Isotopic analysis of water transpired by leaves indicated that leaves approach the isotopic steady state in two stages. The first stage takes 10 to 35 min (with a rate of change of about 3–3%h?1), while in the second stage further approach to the isotopic steady state is asymptotic (with a rate of change of about 0–4% h?1), and under conditions of low transpiration leaves can last for many hours. Substantial spatial isotopic heterogeneity was maintained even when leaves were at or near isotopic steady state. An underlying pattern in this isotopic heterogeneity is often discerned with increasing 18O/16O ratios from base to tip, and from the centre to the edges of the leaves. It is also shown that tissue water along these spatial isotopic gradients, as well as the average leaf water, can have 18O/16O ratios both lower and higher than those predicted by the conventional Craig and Gordon model. We concluded, first, that at any given time during the diurnal cycle of relative humidity the attainment of an isotopic steady state in leaf water cannot be assumed a priori and, secondly, that the isotopic enrichment pattern of leaf water reflects gradual enrichment along the water-flow pathway (e.g. as in a string of pools), rather than a single-step enrichment from source water, as is normally assumed.  相似文献   

4.
DALE  J. E. 《Annals of botany》1961,25(2):94-103
Data are presented to show that reductions in leaf water contentof up to 12 per cent, are associated with increases of mesophyllresistance to viscous flow of air of from 50 to 130 per cent.This effect may explain the variation observed in the relationshipbetween Infiltration Score (I), and the logarithm of leaf resistance,measured porometrically, for leaves with different water contents. Highly significant linear correlations were obtained by plottingthe llogarithm of the resistance iof 10,000 stomata againstI for leaves from plants grown in the field (r = –0.92)kjor in the greenhouse (kr = –o.94). For the two se5tsof material the slopes of the loines were similar, but a differencein levels was highly significant. This is considered in relationto leaf and stomatal structure. The use of the infiltrationmethod for deriving estimates of stomatal resistance is discussed.  相似文献   

5.
It has been confirmed that shading leaves from day 5 onwardslowers the rate of CO2 fixation when they are placed in saturatingirradiances. The reduction due to shade treatment is about 46per cent and a similar reduction in maximum chlorophyll contentof the leaf follows shading. Maximum amounts of total solubleprotein and of Fraction I protein are less in shaded leavesthan in control leaves and prolonged treatment leads to a declinein leaf protein content. The relative amounts of different proteinare also affected by treatment; in control leaves Fraction Iprotein accounts for about 45 per cent of the total but in shadedleaves the value is about 30 per cent. Increases and decreasesin leaf protein amount, with concomitant changes in the ratioof Fraction I to total protein can be brought about by removingshades and re-applying them. Such changes can be induced evenin fully expanded leaves in which net protein synthesis is notusually found. Maximal amounts of leaf protein are found in irradiances of60 W m–2 or more, with lower values at lower light intensities.Where the first leaf is held in a stream of CO2-free air a lowerlevel of protein is found. This, and the ratio of Fraction Ito total protein, are similar to values for shaded leaves, andsuggest the involvement of photosynthetic carbon fixation indetermining leaf protein amount. A 1:1 linear correlation between amount of Fraction I proteinand RuDP carboxylase activity is shown but the rate of CO2 incorporationby leaf extracts is 2–3 times greater than that of theintact leaf. The significance of this and the effect of irradianceon leaf protein amount are discussed.  相似文献   

6.
《Journal of Asia》2006,9(4):361-367
The responses (infestation level and feeding preference) of 50 potato cultivars, including seven Korean recommended cultivars to Spodoptera exigua larvae were examined in the field and the laboratory. Based on the number of potato leaves damaged by S. exigua larvae in the field, seven cultivars (Anco, Denali, Bintje, Jidose, Sandra, Shimabara, and Spunta) were found tolerant to the insect attack, whereas Nicola and Dejima cultivars were highly susceptible. In feeding preference tests using leaflets of 10 selected cultivars (Anco, Denali, Bintje, and seven recommended cultivars), no significant differences were seen among the cultivars, indicating no involvement of chemical resistance. In trichome density per mm2 leaf area, underside leaf surface contained higher trichome densities than the upper side, and the number of long trichome were distributed four times more than short trichome on average. Total leaf trichome density was the highest on cv. Dejima of 32.1, followed by cvs. Bintje and Denali, but the lowest on cv. Jopung of 6.9. From correlation analysis, infestation level in the field by S. exigua was correlated with the density of shorter trichome on upper side of leaf surface (r = 0.737* in 1996 and 0.772** in 1997). However, it was not correlated with the density of the longer trichome on underside.  相似文献   

7.
Recôncavo Baiano is an area favourable for the occurrence of citrus greasy spot (CGS) (Mycosphaerella citri), but there has been no study of this pathosystem in Brazil. This work aimed to characterise the temporal patterns of CGS‐induced defoliation in sweet orange cultivars ‘Bahia’ (Washington Navel) and ‘Pêra’. Temperature, rainfall and relative humidity were recorded, as well as weekly defoliation (fallen leaves/canopy m2 or m3). Considering the mean of fallen leaves per canopy m2, and mean canopy area, the total annual defoliation was estimated to be around 32 000 leaves per plant for ‘Bahia’ and 18 500 for ‘Pêra’ sweet orange. Spectral density analysis showed that defoliation has a 5‐week‐long main cycle for both cultivars. The proportion of symptomatic fallen leaves was never below 0.97. The monthly number of fallen leaves per canopy area was positively correlated with the mean CGS incidence on leaves. Defoliation was significant, resulting in a low leaf density throughout the year. Many defoliation cycles and the very high proportion of symptomatic fallen leaves assure a constant inoculum supply. Based on these results, CGS cannot be considered a minor disease, at least in Recôncavo Baiano.  相似文献   

8.
KLNCK  H. R.; SIM  S. L. 《Annals of botany》1976,40(4):785-793
Experiments were conducted using leaf defoliation and floretemasculation techniques to study sourcesink relationships inthe spring oat cultivars Clintland 60 and Garry. Grain yielddecreased more with leaf lamina removal at panicle emergencethan at anthesis. Removing the penultimate leaf reduced yieldat least as much as removing the flag leaf, indicating the relativeimportance of the penultimate leaf in oats. Removing the flagand penultimate leaves together at panicle emergence, or allleaves, lowered grain yield by 40 per cent, primarily due tothe development of fewer grains. Similar defoliation at anthesisreduced yield by 20 per cent, due mainly to lower single grainweights. While there was some evidence of compensation effectsin Clintland 60, lower leaves were unable to compensate forremoval of flag and penultimate leaves. Grain filling dependedupon an adequate photosynthetic area in the upper portions ofthe plant. Increases in individual grain weights were obtained when grainnumber per panicle was reduced 40 per cent or more by emasculation.Increases in single grain weights did not compensate for lossin numbers. The potential capacity of the grains to accumulateassimilates was not fully exploited under normal field conditions.Straw weight did not increase and total plant dry weight decreasedwith lower grain numbers, indicating a lower than normal rateof production of assimilates.  相似文献   

9.
The analysis of growth and movements of seedling organs of kidney bean (Phaseolus vulgaris L.) provides a pattern of periodic phases of activity and relaxation. The existence of a central organ which would control the phase relationships, is not anticipated in the integrity of the plant. The cyclic activity of individual organs shows itself by growth associated with oscillation movements. One and the same organ may simultaneously accomplish oscillatory movements with a diurnal and ultradiurnal frequency. These rhythms originate during the organ development; the first pair of kidney bean leaves at first executes oscillation movements with a diurnal frequency and only after it is fully developed it exhibits a diurnal cycle with the photophil phase upwards and the scotophil downwards, the oscillations with an ultradiurnal oycle being maintained. The movements of the two leaves are synchronous, but there occur short sections with a desynchronous cycle. Simultaneously with these oscillations, in which the leaf petiole takes part, the adult leaf performs oscillatory movements perpendicular to the longitudinal leaf axis, the so-called side swings, controlled by periodical changes of the joint attaching the leaf blade. Their frequency is practically identical with that of the ultradiurnal cycle. Thus the periodic growth activity of the kidney bean results in growth oscillations passing in the diurnal cycle with a frequency of 0.043 rev.h-1, their ascending and descending phases consisting of periodical ultradiurnal oscillations in cycles of 0.73–0.59 rev.h-1. The epicotyl growth shows a similar pattern: into the basic diurnal nutation cycle with a frequency of 0.042 rev.h-1 ultradiurnal oscillation cycles are incorporated having a similar frequency to that revealed in leaves (0.69–0.64 rev.h-1). The diurnal oscillatory cycles belong to a system established on the basis of periodicity of day and night and other geophysical cycles. The ultradiurnal rhythmic oscillations are presumed to be an expression of the geocontrol system of root and shoot growth direction and orientation of the organ in space. The shape of their trajectories in bean leaves is contradictory to this; they are not spatial helices, as the kybernetic model would presuppose, but have a vertical, upwards and downwards course in one plane. Since these oscillatory movements with an ultradiurnal cycle cease after petiole excision from the stem and after shoot apex amputation, one may presume that they are coupled with the low-frequency oscillatory system of the epicotyl.  相似文献   

10.
ROBSON  M. J.; DEACON  M. J. 《Annals of botany》1978,42(5):1199-1213
Small communities of S24 ryegrass were grown under supplementarylights in a glasshouse at 20°C, and abundantly suppliedwith a complete nutrient solution containing 300 p.p.m. of nitrogen,until they had a leaf area index of 5 and were fully light intercepting.Half were then given a solution containing only 3 p.p.m. ofnitrogen (LN) while the rest were kept at 300 p.p.m. (HN). The HN plants subsequently produced marginally more leaves,which elongated more rapidly to a greater final length and area,on a third more tillers than did the LN plants. Leaves 5, 6 and 7 on the main stem were examined in more detail.In both the HN and the LN plants the d. wts of both laminaeand sheaths fell by about 30 per cent between their full expansionand death. Changes in acid extractable carbohydrate (AEC) verylargely accounted for the changes in leaf weight, particularlyin the LN plants. With increased nitrogen deficiency, AEC contentsrose from less than 10 per cent for leaf 5 to peak values of20 and 45 per cent for the lamina and sheath of leaf 7, as against10 and 15 per cent in the nitrogen sufficient leaves. Conversely,the nitrogen content of the deficient plants fell from valuesof 5·8 and 4·8 per cent for the lamina and sheathof leaf 5 to 3·0 and 1·2 per cent for leaf 7.It was striking that while the HN leaves lost nitrogen onlywhen they aged and died, the LN leaves started losing nitrogenbefore they had reached full expansion—70 per cent ofthe N initially present was remobilized by the time the leaveswere dead. The significance of these findinp to estimates of leaf deathand total biomass production in the field, and to our understandingof the achievement of ceiling yield, are discussed. Luliwn perenne, S24 ryegrass, carbohydrate content, nitrogen content, nitrogen deficiency  相似文献   

11.
The cultivation of N-efficient oilseed rape cultivars could contribute to a reduction of the large N balance surpluses of this crop. To facilitate the breeding process of N-efficient cultivars, the identification of secondary plant traits correlating with N efficiency is necessary. The objectives of this study were to investigate leaf senescence and N uptake parameters of oilseed rape cultivars and doubled haploid (DH) lines with contrasting N efficiency in a short-term nutrient solution experiment and to relate these results to their performance in field experiments. In the nutrient solution experiment, genotypes differed in leaf senescence of fully expanded leaves and maximum N uptake rate per unit root length under low N supply. A high maximum N uptake rate seemed to have contributed to delayed leaf senescence by enhancing N accumulation in leaves. Also in the field experiments, genotypes differed in leaf senescence after flowering at limiting N supply. Additionally, the most N-efficient DH line was able to adapt leaf photosynthetic capacity to the low-light conditions in the canopy during flowering. N efficiency (grain yield at limiting N supply) was positively correlated with delayed leaf senescence both in nutrient solution and field experiments. It is concluded that important leaf and root traits of N-efficient cultivars are expressed in short-term nutrient solution experiments, which may facilitate the selection of N-efficient cultivars.  相似文献   

12.
Although high soil temperatures can occur in apple orchards throughout the world, there is little information on their effect. This investigation was conducted to determine the influence of various durations of root exposure to 34 °C on the growth and physiology of the apple plant. Roots of Royal Gala and McIntosh cultivars were exposed to 34 °C for 0, 8, 16, and 24 hours/day for seven weeks. Royal Gala grown at the 24 hours/day treatment exhibited significant decreases in leaf, shoot, and root growth; chlorophyll concentration of the older leaves; transpiration; discrimination against13C in leaves; and an increase in leaf temperature. In McIntosh, root growth and chlorophyll concentration of leaves were not affected. For both cultivars compared to the control treatment, the continuous high temperature treatment resulted in lower levels of P, Mg, and Mn in leaves. Royal Gala at this treatment showed significantly higher values of foliar N and K and lower values of Ca, Fe, and Zn. For McIntosh the levels of Cu and B decreased significantly in this treatment as compared to the control treatment. We conclude that 34 °C in the root-zone does not stress these cultivars unless it persists throughout the day/night cycle.  相似文献   

13.
Respiration processes are well recognized as fundamental for the plant carbon balance, but little attention has been paid to the relationships among respiration rates, environment and genetic variability. This can be of particular interest to understand the differences in net carbon balances in crops as grapevines. Night respiration (Rn) and its associated growth (Rg) and maintenance (Rm) components were evaluated during leaf expansion in two grapevine cultivars (Tempranillo cv. and Garnacha cv.) that differ in their plant growth pattern and carbon balance. Simultaneously, leaf traits as leaf mass area, nitrogen (N) and carbon (C) content were evaluated in order to relate to the respiratory processes and the leaf growth. The results showed the differences in respiration rates associated with the leaf expansion pattern. Tempranillo developed leaves with higher leaf area and lower dry weight per leaf unit than Garnacha. Although differences between cultivars were observed in terms of growth costs in expanding leaves, the maintenance costs were similar for both cultivars. Also, a significant linear regression was found between respiration rates and N content in expanding and mature leaves. The results indicate that differences in structure and nitrogen content of expanding leaves may lead to respiratory differences between cultivars. These results also demonstrate the importance of respiratory cost components in carbon balance calculations in grapevines.  相似文献   

14.
Nitrate reductase activity (NRA; NADH-nitrate reductase, E. C. 1.6.6.1) has been measured in extracts from leaves of spinach ( Spinacia oleracea L.) in response to rapid changes in illumination, or supply of CO2 or oxygen. Measured in buffers containing magnesium, NRA from leaves decreased in the dark and increased again upon illumination. It decreased also, when CO2 was removed in continuous light, and was reactivated when CO2 was added. Nitrate reductase (NR) from roots of pea ( Pisum sativum L.) was also rapidly modulated in vivo. It increased under anaerobiosis and decreased in air or pure oxygen. The half time for inactivation or reactivation in roots and leaves was 5 to 30 min.
When spinach leaves were harvested during a normal day/night cycle, extractable NRA was low during the night, and high during daytime. However, at any point of the diurnal cycle, NR could be brought to a similar maximum activity by preincubation of the desalted leaf extract with AMP and/or EDTA. Thus, the observed diurnal changes appeared to be mainly a consequence of enzyme modulation, not of protein turnover. In vivo, the reactivation of the inactivated enzyme from both leaves and roots was prevented by okadaic acid, and inhibitor of certain protein phosphatases. Artificial lowering of the ATP-levels in leaf or root tissues by anaerobiosis (dark), mannose or the uncoupler carbonyl cyanide m -chlorophenyl hydrazon (CCCP), always brought about full activation of NR.
By preincubating crude leaf or root extracts with MgATP, NR was inactivated in vitro. Partial purification from spinach leaves of two enzymes with molecular masses in the 67 kD and 100 kD range, respectively, is reported. Both participate in the ATP-dependent inactivation of NR.
Alltogether these data indicate that NR can be rapidly modulated by reversible protein phosphorylation/dephosphorylation, both in shoots and in roots.  相似文献   

15.
Litterfall was sampled in 3- to 7-year-old irrigated and fertilized plantings of Populus Tristis#1 in northern Wisconsin. Leaves accounted for more than 90 per cent of the total litter and reached an asymptotic value of about 4,000 to 4,200 kg/ha. Leaf litterfall culminated in late September or first half of October. Inadequate light appeared to be responsible for an early (June) leaf fall in dense plantings. The maximum cumulative leaf area index ranged from 8.4 to 8.7. The pattern of foliation and defoliation was similar: it started with small leaves in the lower canopy and ended with large leaves of the upper canopy. Longevity of the small leaves was shorter than that of the large leaves. Leaf size was positively affected by fertilization but was not affected by a discontinuation of irrigation by mid-July during the droughty 1976. The specific leaf weight ranged from 2.6 mg/cm2 in the lower canopy to 10.2 mg/cm2 in the upper canopy. The specific leaf weight of litter leaves was 4 to 38 per cent lower than that of green leaves of the same size.  相似文献   

16.
以适宜不同栽培条件的3个甜瓜品种为材料,研究了遮荫对其光合色素含量、净光合速率及比叶重等叶片特性的影响。结果表明:与正常光照相比,遮光处理能诱使甜瓜叶片叶绿素和类胡萝卜素含量显著提高,叶绿素a/b显著降低。全光照条件下,3个甜瓜品种的净光合速率日变化曲线均呈双峰型,有明显的"光合午休"现象,而在遮荫条件下则呈单峰曲线变化,且光合峰值出现的时间比全光照下推迟;遮光条件下甜瓜叶片气孔导度日变化曲线与其净光合速率日变化类似。3个品种间比叶重在全光照条件下差异不显著,但遮荫显著降低了壮龄叶片的比叶重,且遮荫强度越重,比叶重越小;品种‘黄河蜜3号’壮龄叶的比叶重降幅(31.83%)显著大于‘银帝’(27.22%)和‘玉金香’(26.01%)。可见,遮荫降低了甜瓜叶片的净光合速率和功能叶片的比叶重,植株通过增加自身叶片光合色素含量以增强对环境的适应性,缓解遮荫对其的影响,品种‘银帝’表现出较强的耐弱光性。  相似文献   

17.
To investigate differences in leaf structure, chlorophyll and nutrients on terminal branches of the understory tree Asimina triloba, the first (proximal) and the last (distal) leaves to develop in the spring were compared. Proximal leaf expansion was completed before the overstory canopy was fully closed but distal leaf expansion occurred during and after the development of the overstory canopy. Fully expanded proximal leaves were 76% smaller in area, were 18% thicker and had 36% more stomates per m of leaf area when compared to distal leaves. In addition, maximum stomatal conductance to water vapor was greater (150 vs. 120 mmol m−-2s−-1) and the minimum PPFD required for maximum conductance was higher (200 vs. 150 μmol m−-2s−-1) for the proximal leaves. Chlorophyll content was also greater for proximal leaves, but nitrogen and phosphorus contents were lower throughout the entire summer. Seasonal measurements indicated an increase in chlorophyll a content and reductions in nitrogen content throughout the summer growth period for leaves from both positions. The results suggest that distal and proximal leaves differed physiologically and that the measured differences were related to the changing irradiance environment during leaf development. The time of leaf expansion, as indicated by leaf position on the branch, may be an important consideration when examining the water and photosynthetic relations of understory trees.  相似文献   

18.
A priority for the field vegetable grower is to be able to schedule a regular supply of product throughout the growing season. This requires a predictive framework, based on the identification of key developmental events of the crop, and an understanding of how genotypic and environmental factors interact to determine plant development. Four globe artichoke (Cynara cardunculus var. scolymus) cultivars, representing the existing phenological range, were grown in a field experiment, and a range of environmental conditions was imposed by varying both the timing of the first irrigation (which determines the initiation of regrowth) and by repeating the experiment across two locations and 2 years. The timing of the appearance of the main stem capitulum was sensitive to both the growing environment and the cultivar. These differences persisted till flowering and were correlated with final leaf number. As the plant developed, the phyllochron decreased, resulting in three values of phyllochron, each of which was responsive to genotype, and hardly to environment. The timing of the first change in phyllochron was associated with the final leaf number and the appearance of the capitulum. For all the cultivars, the rate of development fell and the final leaf number increased as the length of the photoperiod increased. The later flowering cultivars shared a similar vernalisation requirement, but ‘Spinoso sardo’ did not require a cold period to flower. Leaf length reached a peak before the beginning of stem elongation, and maximum leaf length was correlated with final leaf number. The sensitiveness of the phyllochron to the genotype, and of the number of leaves and the timing of the appearance of the capitulum to both genotype and environment makes them suitable as variables in developmental models. The importance of the final number of leaves is not only because of its phenological significance, but also because of its effect on the ability of the canopy to intercept radiation.  相似文献   

19.
Sugar Beets (Beta vulgaris L. cv F58-554H1) were cultured hydroponically in growth chambers. Leaf orthophosphate (Pi) levels were varied nutritionally. The effect of decreased leaf phosphate (low-P) status was determined on the diurnal changes in the pool sizes of leaf ribulose 1,5-bisphosphate (RuBP), 3-phosphoglycerate (PGA), triose phosphate, fructose 1,6-bisphosphate, fructose-6-phosphate, glucose-6-phosphate, adenylates, nicotinamide nucleotides, and Pi. Except for triose phosphate, low-P treatment caused a marked reduction in the levels of leaf sugar phosphates (on a leaf area basis) throughout the diurnal cycle. Low-P treatment decreased the average leaf RuBP levels by 60 to 69% of control values during the light period. Low-P increased NADPH levels and NADPH/NADP+ ratio but decreased ATP; the ATP/ADP ratio was unaffected. Low P treatment caused a marked reduction in RuBP regeneration (RuBP levels were half the RuBP carboxylase binding site concentration) but did not depress PGA reduction to triose phosphate. These results indicate that photosynthesis in low-P leaves was limited by RuBP regeneration and that RuBP formation in low-P leaves was not limited by the supply of ATP and NADPH. We suggest that RuBP regeneration was limited by the supply of fixed carbon, an increased proportion of which was diverted to starch synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号