首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular analysis of IgM rheumatoid factor binding to chimeric IgG.   总被引:2,自引:0,他引:2  
To localize regions on IgG bound by rheumatoid factors (RF), we studied IgM RF binding to chimeric IgG antibodies consisting of murine V regions fused to human constant regions. Using a modified RF ELISA, we showed that polyclonal RF from rheumatoid arthritis patients bound IgG1, 2, and 4 strongly; IgG3 was also bound, although less well. The majority of 18 monoclonal RF from patients with Waldenstrom's macroglobulinemia bound IgG1, 2, and 4 only. In contrast to RF from RA, 14 of 18 monoclonal RF did not react with IgG3. Only 3 of 18 monoclonal RF bound IgG3 well. By shuffling C region domains between IgG3 and IgG4, we showed that sequence variation in the CH3 domain is responsible for the differential binding of monoclonal RF to IgG3 and IgG4. Hybrid IgG3/IgG4 antibodies containing the CH3 domain of IgG4 were bound by monoclonal RF, whereas those containing the CH3 domain of IgG3 were not. To evaluate the contribution of the N-linked carbohydrate moiety at Asn-297 to RF binding sites on IgG, we measured RF binding to aglycosylated IgG antibodies produced by mutating Asn-297 to another amino acid. Glycosylated and aglycosylated IgG1, 2, and 4 were bound identically by monoclonal and polyclonal RF. Aglycosylated IgG3, however, was bound better than glycosylated IgG3 by polyclonal RF and by IgG3-reactive monoclonal RF.  相似文献   

2.
Chimeric mouse-human IgG was used to study the structural and functional roles of the carbohydrate present in the CH2 domain of human IgG molecules. To remove this N-linked carbohydrate, Asn-297, the oligosaccharide attachment residue, was changed to either Gln (a conservative replacement) or His for IgG1 or Lys for IgG3 (nonconservative replacements) by site-directed mutagenesis. Carbohydrate-deficient antibodies are properly assembled and secreted and bind Ag and protein A. However, aglycosylated IgG are more sensitive to most proteases than their corresponding wild-type IgG, indicating some conformational changes have occurred. Aglycosylated IgG do not bind to the human Fc gamma RI and do not activate C; depending on the isotype, C1q binding ability is either completely lost (IgG1) or dramatically decreased (IgG3). The serum half-life in mice of aglycosylated IgG1-Gln remains the same as wild-type IgG1, 6.5 +/- 0.5 days, whereas aglycosylated IgG3-Gln has a shorter half-life, 3.5 +/- 0.2 days, compared to that of wild-type IgG3, 5.1 +/- 0.4 days. These results indicate the carbohydrate interposed between CH2 domain of human IgG is necessary to maintain the appropriate structure for the maintenance of many of the effector functions dependent on the CH2 domain.  相似文献   

3.
Circulating autoimmune complexes of IgM rheumatoid factors (RF) bound to the Fc portions of normal, polyclonal IgG antibodies are frequently present in humans with rheumatoid arthritis (RA). The sweet tasting methyl ester of L-Asp-L-Phe (aspartame or APM) was found to relieve pain and improve joint mobility in subjects with osteo- and mixed osteo/rheumatoid arthritis [Edmundson, A. B. and Manion, C. V. (1998). Clin. Pharmac. Ther. 63, 580-593]. These clinical observations prompted the testing of the inhibition by APM of the binding interactions of human IgM RFs with IgG Fc regions. The propensity of APM to inhibit IgM RF binding was assessed by competitive enzyme immunoassays with solid-phase human IgG. Ten RA serum samples and three purified monoclonal cryoglobulins, all of which had RF activity, were tested in this system. We found that the presence of APM significantly reduced the binding of IgM RFs. The inhibitory propensity of APM with monoclonal RF cryoglobulins was increased by the addition of CaCl(2) to the binding buffer. Similar inhibition of the binding of RA derived RFs to IgG was observed for Asp-Phe and its amidated derivative, indicating that the methyl ester is not required for APM's interaction with IgM antibodies. A human (Mez) IgM known to bind octameric peptides derived from the Fc portion of a human IgG(1) antibody was tested for binding of dipeptides by the Pepscan method of combinatorial chemistry. The relative binding constants of Asp-Phe and Phe-Asp were ranked among the highest values for 400 possible combinations of the 20 most common amino acids. Possible blocking interactions of APM were explored by computer-assisted docking studies with the model of a complex of an RF Fab with the Fc of a human IgG(4) antibody. Modeling of ternary immune complexes revealed a few key residues, which could act as molecular recognition sites for APM. A structural hypothesis is presented to explain the observed interference with RF reactivity by APM. Extrapolations of the current results suggest that APM may inhibit the binding of IgG in a substantial proportion of IgM RFs. Interference of RF reactivity, especially in RA patients, may alleviate the pain and immobility resulting from chronic inflammation of the joints.  相似文献   

4.
Circulating autoimmune complexes of IgM rheumatoid factors (RF) bound to the Fc portions of normal, polyclonal IgG antibodies are frequently present in humans with rheumatoid arthritis (RA). The sweet tasting methyl ester of L ‐Asp‐L ‐Phe (aspartame or APM) was found to relieve pain and improve joint mobility in subjects with osteo‐ and mixed osteo/rheumatoid arthritis [Edmundson, A. B. and Manion, C. V. ( 1998 ). Clin. Pharmac. Ther. 63 , 580–593]. These clinical observations prompted the testing of the inhibition by APM of the binding interactions of human IgM RFs with IgG Fc regions. The propensity of APM to inhibit IgM RF binding was assessed by competitive enzyme immunoassays with solid‐phase human IgG. Ten RA serum samples and three purified monoclonal cryoglobulins, all of which had RF activity, were tested in this system. We found that the presence of APM significantly reduced the binding of IgM RFs. The inhibitory propensity of APM with monoclonal RF cryoglobulins was increased by the addition of CaCl2 to the binding buffer. Similar inhibition of the binding of RA derived RFs to IgG was observed for Asp–Phe and its amidated derivative, indicating that the methyl ester is not required for APM's interaction with IgM antibodies. A human (Mez) IgM known to bind octameric peptides derived from the Fc portion of a human IgG1 antibody was tested for binding of dipeptides by the Pepscan method of combinatorial chemistry. The relative binding constants of Asp–Phe and Phe–Asp were ranked among the highest values for 400 possible combinations of the 20 most common amino acids. Possible blocking interactions of APM were explored by computer‐assisted docking studies with the model of a complex of an RF Fab with the Fc of a human IgG4 antibody. Modeling of ternary immune complexes revealed a few key residues, which could act as molecular recognition sites for APM. A structural hypothesis is presented to explain the observed interference with RF reactivity by APM. Extrapolations of the current results suggest that APM may inhibit the binding of IgG in a substantial proportion of IgM RFs. Interference of RF reactivity, especially in RA patients, may alleviate the pain and immobility resulting from chronic inflammation of the joints. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
 Our analysis of IgG rheumatoid factors (RFs) from three patients with rheumatoid arthritis (RA) revealed that most contained significant numbers of skewed mutations per V region, suggesting that these RFs arose from antigen-driven responses. To further study IgG RFs in RA, we used pComb3 vector to construct an IgG1,λ combinatorial antibody library from a synovial fluid sample. After panning against human IgG, Fab fragments from 71/96 phage clones bound to Fc-coated wells. Sequence analysis of 20 randomly chosen Fc-binders showed that 17 (85%) clones had identical heavy (H) and light (L) chain V regions, represented by Humha311 and Humla211, respectively. Of the remaining three clones, two had the same Humla211 L chain, but each with a different H chain V region. All the putative germline V genes for these RFs also encode RF in RA patients. However, none of these RF V regions are similar to those of the two IgG RFs derived by the hybridoma technique from the same synovial fluid. The Humha311 H chain has two frameshifts: a one-base insertion upstream of the JH region and a four-base deletion near the end of the CH1 region, resulting in a mainly unconventional amino acid sequence in the CH1 region. In the future, it will be important to study the presence of IgG molecules with such unconventional CH1 amino acid sequences, and the effects of these amino acid sequences on the structures and immunological properties of the IgG molecules. Received: 4 September 1996 / Revised: 22 October 1996  相似文献   

6.
《ImmunoMethods》1993,2(1):65-70
Bacterial Fc-binding proteins (FcBPs) such as staphylococcal protein A and streptococcal protein G possess IgG fine specificity strikingly similar to that of rheumatoid factors (RFs) derived from patients with rheumatoid arthritis (RA). They were shown to bind to the CH2-CH3 interface region of IgG. It has also been shown that peripheral blood lymphocytes can be selectively induced to produce RF by protein A. Several hypotheses, including idiotypic mimicry, have been proposed to explain the relationship of RF and bacterial FcBPs. Although convincing evidence for the involvement of bacterial infection in the etiology of RA has not been available, viral infection has frequently been strongly suspected as the agent possibly triggering RA. Herpes family viruses possess FcBPs reacting with the same CH2-CH3 interface region of IgG. Fab fragments of monoclonal antibodies (II-481, 88-S) to the IgG-bindlng site of glycoprotein E (gE), the FcBP glycoprotein of herpes simplex viruses, showed strong binding to RF. The epitope on gE reacting with mAb II-481 showed significant overlap with the IgG Fc-binding site. Antibodies to cytomegalovirus FcBP have been detected in a substantial proportion of sera from patients with RA. These observations may imply that some RFs may be produced as anti-idiotype antibodies to anti-viral FcBP antibodies. Thus, bacterial or viral FcBP could provide a link between RF production and a possible infectious etiology of RA.  相似文献   

7.
It is well documented that serum IgG from rheumatoid arthritis (RA) patients exhibits decreased galactosylation of its conservative N-glycans (Asn-297) in CH2 domains of the heavy chains; it has been shown that this agalactosylation is proportional to disease severity. In the present investigation we analyzed galactosylation of IgG derived from the patients using a modified ELISA-plate test, biosensor BIAcore and total sugar analysis (GC-MS). For ELISA and BIAcore the binding of IgG preparations, purified from the patients’ sera, to two lectins: Ricinus communis (RCA-I) and Griffonia simplicifolia (GSL-II) was applied. Based on ELISA-plate test an agalactosylation factor (AF, a relative ratio of GSL-II/RCA-I binding) was calculated, which was proportional to actual disease severity. Repeated testing of several patients before and after treatment with methotrexate (MTX) alone or in combination with Remicade (a chimeric antibody anti-TNF-α) supplied results indicating an increase of IgG galactosylation during the treatment. This introductory observation suggests that IgG galactosylation may be an additional indicator of the RA patients’ improvement.  相似文献   

8.
Binding of the Fc domain of Immunoglobulin G (IgG) to Fcγ receptors on leukocytes can initiate a series of signaling events resulting in antibody-dependent cell-mediated cytotoxicity (ADCC) and other important immune responses. Fc domains lacking glycosylation at N297 have greatly diminished Fcγ receptor binding and lack the ability to initiate a robust ADCC response. Earlier structural studies of Fc domains with either full length or truncated N297 glycans led to the proposal that these glycans can stabilize an "open" Fc conformation recognized by Fcγ receptors. We determined the structure of an E. coli expressed, aglycosylated human Fc domain at 3.1 ? resolution and observed significant disorder in the C'E loop, a region critical for Fcγ receptor binding, as well as a decrease in distance between the C(H)2 domains relative to glycosylated Fc structures. However, comparison of the aglycosylated human Fc structure with enzymatically deglycosylated Fc structures revealed large differences in the relative orientations and distances between C(H)2 domains. To provide a better appreciation of the physiologically relevant conformation of the Fc domain in solution, we determined Radii of Gyration (R(g)) by small-angle X-ray scattering (SAXS) and found that the aglycosylated Fc displays a larger R(g) than glycosylated Fc, suggesting a more open C(H)2 orientation under these conditions. Moreover, the R(g) of aglycosylated Fc was reduced by mutations at the C(H)2-C(H)3 interface (E382V/M428I), which confer highly selective binding to FcγRI and novel biological activities.  相似文献   

9.
An expression vector (pIL-2/IgG1) was constructed with the coding sequence of human IL-2 inserted upstream of the four exons (CH1, hinge, CH2, and CH3) that encode the human IgG1 H chain constant region. Introduction of this vector into a nonsecreting murine myeloma cell line resulted in the production of a chimeric molecule (IL-2/IgG1) consisting of IL-2 attached to the three Ig constant region domains. This molecule was secreted by the transfectant as a homodimer. Functional characterization revealed that the IL-2/IgG1 chimeric molecule exhibited the binding and proliferation-mediating activities of IL-2. On a per molecule basis, IL-2/IgG1 was indistinguishable from human rIL-2 in the ability to induce the proliferation of an IL-2-dependent T cell line. This chimeric molecule also possesses Ig effector function, in that it can mediate the specific lysis of IL-2R-positive cells in the presence of complement. These results demonstrate that it is possible to maintain Ig effector function in molecules ("immunoligands") in which the binding specificity is conferred not by Ig variable regions, but rather, by a ligand of choice.  相似文献   

10.
Aglycosylated human IgG1 and IgG3 monoclonal anti-D (Rh) and human IgG1 and IgG3 chimaeric anti-5-iodo-4-hydroxy-3-nitrophenacetyl (anti-NIP) monoclonal antibodies produced in the presence of tunicamycin have been compared with the native glycosylated proteins with respect to recognition by human Fc gamma RI and/or Fc gamma RII receptors on U937, Daudi or K562 cells. Human red cells sensitized with glycosylated IgG3 form rosettes via Fc gamma RI with 60% of U937 cells. Inhibition of rosette formation required greater than 35-fold concentrated more aglycosylated than glycosylated human monoclonal anti-D (Rh) antibody. Unlabelled polyclonal human IgG and glycosylated monoclonal IgG1 and anti-D (Rh) antibody inhibited the binding of 125I-labelled monomeric human IgG binding by U937 Fc gamma RI at concentrations greater than 50-fold lower than the aglycosylated monoclonal IgG1 anti-D (Rh) (K50 approximately 3 x 10(-9) M and approximately 6 x 10(-7) M respectively). Similar results were obtained using glycosylated and aglycosylated monoclonal human IgG1 or IgG3 chimaeric anti-NIP antibody-sensitized red cells rosetting with Fc gamma RI-/Fc gamma RII+ Daudi and K562 cells. Rosette formation could be inhibited by the glycosylated form (at greater than 10(-6) M) but not by the aglycosylated form. Haemagglutination analysis using a panel of murine monoclonal antibodies specific for epitopes located on C gamma 2, C gamma 3 or C gamma 2/C gamma 3 interface regions did not demonstrate differences in Fc conformation between the glycosylated or aglycosylated human monoclonal antibodies. These data suggest that the Fc gamma RI and Fc gamma RII sites on human IgG are highly conformation-dependent and that the carbohydrate moiety serves to stabilize the Fc structure rather than interacting directly with Fc receptors.  相似文献   

11.
Ha S  Ou Y  Vlasak J  Li Y  Wang S  Vo K  Du Y  Mach A  Fang Y  Zhang N 《Glycobiology》2011,21(8):1087-1096
N-glycosylation of immunoglobulin G (IgG) at asparigine residue 297 plays a critical role in antibody stability and immune cell-mediated Fc effector function. Current understanding pertaining to Fc glycosylation is based on studies with IgGs that are either fully glycosylated [both heavy chain (HC) glycosylated] or aglycosylated (neither HC glycosylated). No study has been reported on the properties of hemi-glycosylated IgGs, antibodies with asymmetrical glycosylation in the Fc region such that one HC is glycosylated and the other is aglycosylated. We report here for the first time a detailed study of how hemi-glycosylation affects the stability and functional activities of an IgG1 antibody, mAb-X, in comparison to its fully glycosylated counterpart. Our results show that hemi-glycosylation does not impact Fab-mediated antigen binding, nor does it impact neonatal Fc receptor binding. Hemi-glycosylated mAb-X has slightly decreased thermal stability in the CH2 domain and a moderate decrease (~20%) in C1q binding. More importantly, the hemi-glycosylated form shows significantly decreased binding affinities toward all Fc gamma receptors (FcγRs) including the high-affinity FcγRI, and the low-affinity FcγRIIA, FcγRIIB, FcγRIIIA and FcγRIIIB. The decreased binding affinities to FcγRs result in a 3.5-fold decrease in antibody-dependent cell cytotoxicity (ADCC). As ADCC often plays an important role in therapeutic antibody efficacy, glycosylation status will not only affect the antibody quality but also may impact the biological function of the product.  相似文献   

12.
FcγRIIIa, which is predominantly expressed on the surface of natural killer cells, plays a key role in antibody-dependent cell-mediated cytotoxicity (ADCC), a major effector function of therapeutic IgG antibodies that results in the death of aberrant cells. Despite the potential uses of aglycosylated IgG antibodies, which can be easily produced in bacteria and do not have complicated glycan heterogeneity issues, they show negligible binding to FcγRIIIa and abolish the activation of immune leukocytes for tumor cell clearance, in sharp contrast to most glycosylated IgG antibodies used in the clinical setting. For directed evolution of aglycosylated Fc variants that bind to FcγRIIIa and, in turn, exert potent ADCC effector function, we randomized the aglycosylated Fc region of full-length IgG expressed on the inner membrane of Escherichia coli. Multiple rounds of high-throughput screening using flow cytometry facilitated the isolation of aglycosylated IgG Fc variants that exhibited higher binding affinity to FcγRIIIa-158V and FcγRIIIa-158F compared with clinical-grade trastuzumab (Herceptin®). The resulting aglycosylated trastuzumab IgG antibody Fc variants could elicit strong peripheral blood mononuclear cell-mediated ADCC without glycosylation in the Fc region.  相似文献   

13.
Herpes simplex virus type I (HSV-1) virions and HSV-1-infected cells bind to human immunoglobulin G (hIgG) via its Fc region. A complex of two surface glycoproteins encoded by HSV-1, gE and gI, is responsible for Fc binding. We have co-expressed soluble truncated forms of gE and gI in Chinese hamster ovary cells. Soluble gE-gI complexes can be purified from transfected cell supernatants using a purification scheme that is based upon the Fc receptor function of gE-gI. Using gel filtration and analytical ultracentrifugation, we determined that soluble gE-gI is a heterodimer composed of one molecule of gE and one molecule of gI and that gE-gI heterodimers bind hIgG with a 1:1 stoichiometry. Biosensor-based studies of the binding of wild type or mutant IgG proteins to soluble gE-gI indicate that histidine 435 at the CH2-CH3 domain interface of IgG is a critical residue for IgG binding to gE-gI. We observe many similarities between the characteristics of IgG binding by gE-gI and by rheumatoid factors and bacterial Fc receptors such as Staphylococcus aureus protein A. These observations support a model for the origin of some rheumatoid factors, in which they represent anti-idiotypic antibodies directed against antibodies to bacterial and viral Fc receptors.  相似文献   

14.
In recent years a number of aglycosylated therapeutic antibodies have entered the clinic. The clinical evaluation of these antibodies has served to dispel concerns that the absence of the ubiquitous N297 glycan in the Fc of IgG might result in immunogenicity, poor in vivo stability or unfavorable pharmacokinetics. Importantly, recent studies have now demonstrated that aglycosylated antibodies can be engineered to display novel effector functions and mechanisms of action that do not appear to be possible with their glycosylated counterparts. Moreover, the ability to manufacture aglycosylated antibodies in lower eukaryotes or in bacteria provides significant bioprocessing advantages in terms of shorter bioprocess development and running times and by completely bypassing the problems associated with the glycan heterogeneity of conventional antibodies. These advantages are poised to catapult aglycosylated antibodies to the forefront of protein therapeutics.  相似文献   

15.
The binding site specificity of 12 monoclonal and 11 polyclonal IgM rheumatoid factors (RF) isolated from human plasma or serum has been studied. All IgM RF bound best to sites on IgG and intact Fc. The monoclonal IgM RF did not bind at all to fragments lacking the C gamma 2 or C gamma 3 domains. In contrast, low level binding to the pFc' fragment, composed of the C gamma 3 domain, was seen with seven IgM RF, mainly from patients with rheumatoid arthritis (RA). IgG1 binding appeared to be a requisite specificity of all human IgM RF. IgM RF binding to IgG3 subclass was common among the monoclonal IgM RF. Most RA polyclonal IgM RF but only 2 of the monoclonal IgM RF possessed the IgG1, 2 and 4 binding pattern. Monoclonal IgM RF which bound best to histidine-modified IgG also bound well to IgG3. The 7-kDa fragment D of staphylococcal protein A inhibited the IgG binding of most monoclonal and to a lesser degree polyclonal IgM RF. Thus, the results indicate that the C gamma 2-C gamma 3 interface region of IgG contains the predominant determinants for monoclonal and polyclonal IgM RF. For some monoclonal IgM RF the binding site, even though at the interface of the C gamma 2 and C gamma 3 domains, is not the staphylococcal protein A site. Furthermore, polyclonal IgM RF possess specificities not encountered among the monoclonal IgM RF. These specificities may have special  相似文献   

16.
Antibody interactions with Fcγ receptors (FcγRs), like FcγRIIIA, play a critical role in mediating antibody effector functions and thereby contribute significantly to the biologic and therapeutic activity of antibodies. Over the past decade, considerable work has been directed towards production of antibodies with altered binding affinity to FcγRs and evaluation of how the alterations modulate their therapeutic activity. This has been achieved by altering glycosylation status at N297 or by engineering modifications in the crystallizable fragment (Fc) region. While the effects of these modifications on biologic activity and efficacy have been examined, few studies have been conducted to understand their effect on antibody pharmacokinetics (PK). We present here a retrospective analysis in which we characterize the PK of three antibody variants with decreased FcγR binding affinity caused by amino acid substitutions in the Fc region (N297A, N297G, and L234A/L235A) and three antibody variants with increased FcγRIIIA binding affinity caused by afucosylation at N297, and compare their PK to corresponding wild type antibody PK in cynomolgus monkeys. For all antibodies, PK was examined at a dose that was known to be in the linear range. Since production of the N297A and N297G variants in Chinese hamster ovary cells results in aglycosylated antibodies that do not bind to FcγRs, we also examined the effect of expression of an aglycosylated antibody, without sequence change(s), in E. coli. All the variants demonstrated similar PK compared with that of the wild type antibodies, suggesting that, for the six antibodies presented here, altered FcγR binding affinity does not affect PK.  相似文献   

17.
Immunoglobulin G (IgG) antibodies are an integral part of the adaptive immune response that provide a direct link between humoral and cellular components of the immune system. Insights into relationships between the structure and function of human IgGs have prompted molecular engineering efforts to enhance or eliminate specific properties, such as Fc-mediated immune effector functions. Human IgGs have an N-glycosylation site at Asn297, located in the second heavy chain constant region (CH2). The composition of the Fc glycan can have substantial impacts on Fc gamma receptor(FcγR) binding. The removal of the glycan through enzymatic deglycosylation or mutagenesis of the N-linked glycosylation site has been reported to "silence" FcγR-binding and effector functions, particularly with assays that measure monomeric binding. However, interactions between IgGs and FcγRs are not limited to monomeric interactions but can be influenced by avidity, which takes into account the sum of multimeric interactions between antigen-engaged IgGs and FcγRs. We show here that under in vitro conditions, which allowed avidity binding, aglycosylated IgGs can bind to one of the FcγRs, FcγRI, and mediate effector functions. These studies highlight how the valency of a molecular interaction (monomeric binding versus avidity binding) can influence antibody/FcγR interactions such that avidity effects can translate very low intrinsic affinities into significant functional outcomes.  相似文献   

18.
Chimeric and humanized antibodies with specificity for the CD33 antigen.   总被引:6,自引:0,他引:6  
L and H chain cDNAs of M195, a murine mAb that binds to the CD33 Ag on normal and leukemic myeloid cells, were cloned. The cDNAs were used in the construction of mouse/human IgG1 and IgG3 chimeric antibodies. In addition, humanized antibodies were constructed which combined the complementarity-determining regions of the M195 antibody with human framework and constant regions. The human framework was chosen to maximize homology with the M195 V domain sequence. Moreover, a computer model of M195 was used to identify several framework amino acids that are likely to interact with the complementarity-determining regions, and these residues were also retained in the humanized antibodies. Unexpectedly, the humanized IgG1 and IgG3 M195 antibodies, which have reshaped V regions, have higher apparent binding affinity for the CD33 Ag than the chimeric or mouse antibodies.  相似文献   

19.
The development of hybridoma and recombinant DNA technologies has made it possible to use antibodies against cancer, autoimmune disorders, and infectious diseases in humans. These advances in therapy, as well as immunoprophylaxis, could also make it possible to use these technologies in agricultural species of economic importance such as pigs. Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus causing very important economic losses to the industry. Passive transfer of antibodies obtained by biotechnology could be used in the future to complement or replace vaccination against this and other pig pathogens. To this end, we constructed and studied the properties of chimeric mouse × pig anti‐PRRSV antibodies. We cloned the constant regions of gamma‐1 and gamma‐2 heavy chains and the lambda light chain of pig antibodies in frame with the variable regions of heavy and light chains of mouse monoclonal antibody ISU25C1, which has neutralizing activity against PRRSV. The coding regions for chimeric IgG1 and IgG2 were expressed in a baculovirus expression system. Both chimeric antibodies recognized PRRSV in ELISA as well as in a Western‐blot format and, more importantly, were able to neutralize PRRSV in the same fashion as the parent mouse monoclonal antibody ISU25C1. In addition, we show that both pig IgG1 and IgG2 antibodies could bind complement component C1q, with IgG2 being more efficient than IgG1 in binding C1q. Expressing chimeric pig antibodies with protective capabilities offers a new alternative strategy for infectious disease control in domestic pigs. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
Affinity-purified rheumatoid factors (RF) from 20 patients with rheumatoid arthritis were tested for their reactivity with the mAb II-481 against glycoprotein E (gE), the Fc gamma-binding protein of HSV-1, as well as with a panel of mAb against human Fc gamma R. All RF bound to mAb II-481 in preference to mAb IV.3 (anti-human Fc gamma RII) or MOPC 141 (control mAb) which belong to the same IgG2b subclass. Five RF showed strong reactivity with II-481. No significant reactivity was observed between RF and mAb against human Fc gamma R. Non-RF human IgM did not react with any of the mAb. Clear-cut binding to II-481 was also seen with monoclonal IgM-RF derived from MRL/1 mice (mRF-2). The reaction between RF and II-481 was completely inhibited by human IgG. It was also inhibited by BHK cell extract infected with HSV-1, and with purified gE. II-481 inhibited the binding of human IgG Fc to the infected cell extract, confirming that II-481 recognizes the Fc-binding site on gE. II-481 did not react directly with human IgG or Fc of IgG. mAb to human IgG2 showed stronger binding to II-481 than to MOPC 141, suggesting II-481 has conformational similarity to human IgG H chain. These results suggest that at least some RF bear the "internal image" of HSV-1 Fc gamma-binding protein and support the hypothesis that some RF may be generated as anti-idiotype antibodies against antiviral antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号