首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
N-terminal truncation of chemokines by proteases including dipeptidyl peptidase (DP) IV significantly alters their biological activity; generally ablating cognate G-protein coupled receptor engagement and often generating potent receptor antagonists. DP8 is a recently recognised member of the prolyl oligopeptidase gene family that includes DPIV. Since DPIV is known to process chemokines we surveyed 27 chemokines for cleavage by DP8. We report DP8 cleavage of the N-terminal two residues of IP10 (CXCL10), ITAC (CXCL11) and SDF-1 (CXCL12). This has implications for DP8 substrate specificity. Chemokine cleavage and inactivation may occur in vivo upon cell lysis and release of DP8 or in the inactivation of internalized chemokine/receptor complexes.  相似文献   

2.
Dipeptidyl peptidase IV (DP-IV/CD26), fibroblast activation protein (FAP), DP-like 1 (DPL1), DP8, DP9, and DPL2 comprise the CD26 gene family. CD26/DP-IV has roles in liver disease, T cell costimulation, chemokine biology, type II diabetes, and tumor biology. DPIV substrates include the glucagonlike peptides, neuropeptide Y, and the chemokines CCL3, CCL5, CCL11, CCL22, and CXCL12. We have proposed that the extracellular region of CD26 is analogous to prolyl oligopeptidase in consisting of an alpha/beta hydrolase domain contributed by both N- and C-terminal portions of the polypeptide and a seven-blade beta-propeller domain. Replacing the C-terminal portion of the predicted alpha/beta hydrolase domain of CD26 (residues 501-766) with the homologous portion of DP8 or DP9 produced intact proteins. However, these chimeric proteins lacked dimerization and peptidase activity, suggesting that CD26 dimerization requires the C-terminal portion of the alpha/beta hydrolase domain. Deleting some N-terminal residues of the alpha/beta hydrolase domain of CD26 ablated peptidase activity and greatly diminished cell surface expression. Together with previous data that CD26 peptidase activity requires the C-terminal 20 residues, this suggests that peptidase activity requires the entire alpha/beta hydrolase domain. The catalytic triad of DP8 was shown to be Ser(739)-Asp (817)-His(849). Glu(259) of DP8, a residue distant from the catalytic triad yet greatly conserved in the CD26 gene family, was shown to be required for peptidase activity. These data concord with our predicted CD26 structure, indicate that biosynthesis of a functional fragment of CD26 is difficult, and confirm the functional homology of DP8 with CD26.  相似文献   

3.
The cellular dipeptidyl peptidase IV (DPIV, E.C.3.4.14.5, CD26) is a type II membrane peptidase with various physio-logical functions. Our main knowledge on DPIV comes from studies of soluble DPIV which plays a role in regulation of glucose homeostasis by inactivation of the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic poly-peptide. It has been reported that membrane-bound DPIV plays a crucial role in the immune system and in other tissues and cells, but the knowledge on the action of cellular DPIV and its regulation is limited. In this study, we show particularly for immune cells that DPIV and not DP8 or DP9 is the most potent member of the DPIV family in regulating cellular immune functions. Moreover, we provide evidence that soluble and cellular DPIV differ in functions and hand-ling of substrates and inhibitors owing to the different accessibility of peptide substrates to the two access paths of DPIV. The different functions are based on the favored access path of the central pore of cellular DPIV and a special central pore binding site which assists substrate access to the active site of the enzyme. The newly discovered central pore binding site mediates an autosterical regulation of cellular DPIV and is its most crucial target site to regulate cellular functions such as growth and cytokine production. Neuropeptide Y (NPY) processing by cellular DPIV was found to be inhibited by ligands which interact with the central pore binding site. This finding suggests a crucial role of the immunosuppressive cytokine NPY in the function of DPIV in growth regulation.  相似文献   

4.
DPL2 (DPP10) found at chromosome 2q14.1 is a member of the dipeptidyl peptidase IV (DPIV) gene family. Here we characterize a novel short DPL2 isoform (DPL2-s), a 789-amino acid protein, that differs from the previously described long DPL2 isoform (DPL2-l) at the N-terminal cytoplasmic domain by 13 amino acids. The two DPL2 isoforms use alternate first exons. DPL2 mRNA was expressed mainly in the brain and pancreas. Multiple forms of recombinant DPL2-s protein were observed in 293T cells, having mobilities 96 kDa, 100 kDa, and approximately 250 kDa which may represent soluble DPL2, transmembrane DPL2 and multimeric DPL2 respectively. DPL2 is glycosylated as a band shift is observed following PNGase F deglycosylation. DPL2-s was expressed primarily on the cell surface of transfected 293T and PC12 cells. DPL2-s exhibits high sequence homology with other DPIV peptidases, but lacks a catalytic serine residue and lacks dipeptidyl peptidase activity. Substitutions of Gly(644)-->Ser, Lys(643)Gly(644)-->TrpSer, or Asp(561)Lys(643)Gly(644)-->TyrTrpSer in the catalytic motif did not confer dipeptidyl peptidase activity upon DPL2-s. Thus, although DPL2 is similar in structure and sequence to the other dipeptidyl peptidases, it lacks vital residues required to confer dipeptidyl peptidase activity and has instead evolved features that enable it to act as an important component of voltage-gated potassium channels.  相似文献   

5.
6.
7.
8.
The expression of dipeptidyl peptidase 4 (DP4, CD26) affects T-cell recruitment to lungs in an experimental rat asthma model. Furthermore, the gene of the structural homologous DP10 represents a susceptibility locus for asthma in humans, and the functional homologous DP8/9 are expressed in human leukocytes. Thus, although several mechanisms may account for a role of DP4-like peptidases in asthma, detailed information on their anatomical sites of expression and function in lungs is lacking. Therefore, bronchi and lung parenchyma were evaluated using immunohistochemistry and histochemical/enzymatic activity assays, as well as quantitative real-time PCR for this family of peptidases in naïve and asthmatic rat lungs derived from wild-type F344 and DP4-deficient F344 rat strains. Surprisingly, results show not only that the induction of experimental asthma increases DP4 enzymatic activity in the bronchoalveolar lavage fluid and parenchyma, but also that DP8/9 enzymatic activity is regulated and, as well as the expression of DP10, primarily found in the bronchial epithelium of the airways. This is the first report showing a differential and site-specific DP4-like expression and function in the lungs, suggesting a pathophysiologically significant role in asthma. (J Histochem Cytochem 56:147–155, 2008)  相似文献   

9.
Glucagon-like peptide-2 (GLP-2) is a potent intestinotrophic growth factor that enhances repair of damaged intestinal tissue. However, its bioactivity is limited by dipeptidyl peptidase IV (DPIV)-mediated degradation. We hypothesized that DPIV(-/-) mice would display an increased resistance to, and an enhanced recovery from, dextran sulfate sodium (DSS)-induced colitis compared to DPIV(+/+) mice. DPIV(+/+) and DPIV(-/-) mice consumed 2% DSS for 6 days, followed by a 15 day recovery period. Mice were killed at days 0, 3, 6, 9, 14, and 21 (n = 6-8) and the small intestine and colon removed for histological assessment of villus height, crypt depth, and crypt area. The epithelial cell proliferative labeling index was determined by proliferating cell nuclear antigen (PCNA) immunostaining. Small intestine, colon, and total body weight did not differ between DPIV(+/+) and DPIV(-/-) mice. Distal colon crypt depth did not differ significantly between DPIV(+/+) and DPIV(-/-) mice during the development of DSS-colitis or during the recovery phase. Similarly no significant effects were apparent on distal colon crypt area or PCNA labeling index between DPIV(+/+) and DPIV(-/-) during the development of and recovery from DSS-colitis. However, DPIV(-/-) mice still possessed significant levels of plasma DPIV-like activity. We conclude that loss of DPIV activity does not increase resistance to experimental colitis and hypothesize that other DPIV family members may also be involved in the cleavage of GLP-2.  相似文献   

10.
N-terminal truncation of NPY has important physiological consequences, because the truncated peptides lose their capability to activate the Y1-receptor. The sources of N-terminally truncated NPY and related peptides are unknown and several proline specific peptidases may be involved. First, we therefore provide an overview on the peptidases, belonging to structural and functional homologues of dipeptidyl peptidase 4 (DP4) as well as aminopeptidase P (APP) and thus, represent potential candidates of NPY cleavage in vivo. Second, applying selective inhibitors against DP4, DP8/9 and DP2, respectively, the enzymatic distribution was analyzed in brain extracts from wild type and DP4 deficient F344 rat substrains and human plasma samples in activity studies as well as by matrix assisted laser desorption/ionisation-time of flight (MALDI-TOF)-mass spectrometry. Third, co-transfection of Cos-1 cells with Dpp4 and Npy followed by confocal lasermicroscopy illustrated that hNPY-dsRed1-N1 was transported in large dense core vesicles towards the membrane while rDP4-GFP-C1 was transported primarily in different vesicles thereby providing no clear evidence for co-localization of NPY and DP4. Nevertheless, the review and experimental results of activity and mass spectrometry studies support the notion that at least five peptidases (DP4, DP8, DP9, XPNPEP1, XPNPEP2) are potentially involved in NPY cleavage while the serine protease DP4 (CD26) could be the principal peptidase involved in the N-terminal truncation of NPY. However, DP8 and DP9 are also capable of cleaving NPY, whereas no cleavage could be demonstrated for DP2.  相似文献   

11.
Tripeptidyl peptidase II is a high molecular weight serine exopeptidase, which has been purified from rat liver and human erythrocytes. Four clones, representing 4453 bp, or 90% of the mRNA of the human enzyme, have been isolated from two different cDNA libraries. One clone, designated A2, was obtained after screening a human B-lymphocyte cDNA library with a degenerated oligonucleotide mixture. The B-lymphocyte cDNA library and a cDNA library, obtained from human fibroblasts, were rescreened with a 147 bp fragment from the 5' part of the A2 clone, whereby three different overlapping cDNA clones could be isolated. The deduced amino acid sequence, 1196 amino acid residues, corresponding to the longest open reading frame of the assembled nucleotide sequence, was compared to sequences of current databases. This revealed a 56% similarity between the bacterial enzyme subtilisin and the N-terminal part of tripeptidyl peptidase II. The enzyme was found to be represented by two different mRNAs of 4.2 and 5.0 kilobases, respectively, which probably result from the utilization of two different polyadenylation sites. Furthermore, cDNA corresponding to both the N-terminal and C-terminal part of tripeptidyl peptidase II hybridized with genomic DNA from mouse, horse, calf, and hen, even under fairly high stringency conditions, indicating that tripeptidyl peptidase II is highly conserved.  相似文献   

12.
The dipeptidyl peptidase IV gene family contains the four peptidases dipeptidyl peptidase IV, fibroblast activation protein, dipeptidyl peptidase 8 and dipeptidyl peptidase 9. Dipeptidyl peptidase IV and fibroblast activation protein are involved in cell-extracellular matrix interactions and tissue remodeling. Fibroblast activation protein is upregulated and dipeptidyl peptidase IV is dysregulated in chronic liver disease. The effects of dipeptidyl peptidase 8 and dipeptidyl peptidase 9 on cell adhesion, cell migration, wound healing and apoptosis were measured by using green fluorescent protein fusion proteins to identify transfected cells. Dipeptidyl peptidase 9-overexpressing cells exhibited impaired cell adhesion, migration in transwells and monolayer wound healing on collagen I, fibronectin and Matrigel. Dipeptidyl peptidase 8-overexpressing cells exhibited impaired cell migration on collagen I and impaired wound healing on collagen I and fibronectin in comparison to the green fluorescent protein-transfected controls. Dipeptidyl peptidase 8 and dipeptidyl peptidase 9 enhanced induced apoptosis, and dipeptidyl peptidase 9 overexpression increased spontaneous apoptosis. Mechanistic investigations showed that neither the catalytic serine of dipeptidyl peptidase 8 or dipeptidyl peptidase 9 nor the Arg-Gly-Asp integrin-binding motif in dipeptidyl peptidase 9 were required for the impairment of cell survival, cell adhesion or wound healing. We have previously shown that the in vitro roles of dipeptidyl peptidase IV and fibroblast activation protein in cell-extracellular matrix interactions and apoptosis are similarly independent of catalytic activity. Dipeptidyl peptidase 9 overexpression reduced beta-catenin, tissue inhibitor of matrix metalloproteinases 2 and discoidin domain receptor 1 expression. This is the first demonstration that dipeptidyl peptidase 8 and dipeptidyl peptidase 9 influence cell-extracellular matrix interactions, and thus may regulate tissue remodeling.  相似文献   

13.
Dipeptidyl peptidases 8 and 9 have been identified as gene members of the S9b family of dipeptidyl peptidases. In the present paper, we report the characterization of recombinant dipeptidyl peptidases 8 and 9 using the baculovirus expression system. We have found that only the full-length variants of the two proteins can be expressed as active peptidases, which are 882 and 892 amino acids in length for dipeptidyl peptidase 8 and 9 respectively. We show further that the purified proteins are active dimers and that they show similar Michaelis-Menten kinetics and substrate specificity. Both cleave the peptide hormones glucagon-like peptide-1, glucagon-like peptide-2, neuropeptide Y and peptide YY with marked kinetic differences compared with dipeptidyl peptidase IV. Inhibition of dipeptidyl peptidases IV, 8 and 9 using the well-known dipeptidyl peptidase IV inhibitor valine pyrrolidide resulted in similar K(i) values, indicating that this inhibitor is non-selective for any of the three dipeptidyl peptidases.  相似文献   

14.
15.
The discovery of a potentially novel proline-specific peptidase from bovine serum is presented which is capable of cleaving the dipeptidyl peptidase IV (DPIV) substrate Gly-Pro-MCA. The enzyme was isolated and purified with the use of Phenyl Sepharose Hydrophobic Interaction, Sephacryl S-300 Gel Filtration, and Q-Sephacryl Anion Exchange, producing an overall purification factor of 257. SDS PAGE resulted in a monomeric molecular mass of 158kDa while size exclusion chromatography generated a native molecular mass of 328kDa. The enzyme remained active over a broad pH range with a distinct preference for a neutral pH range of 7-8.5. Chromatofocusing and isoelectric focusing (IEF) revealed the enzyme's isoelectric point to be 4.74. DPIV-like activity was not inhibited by serine protease inhibitors but was by the metallo-protease inhibitors, the phenanthrolines. The enzyme was also partially inhibited by bestatin. Substrate specificity studies proved that the enzyme is capable of sequential cleavage of bovine beta-Casomorphin and Substance P. The peptidase cleaved the standard DPIV substrate, Gly-Pro-MCA with a K(M) of 38.4 microM, while Lys-Pro-MCA was hydrolysed with a K(M) of 103 microM. The DPIV-like activity was specifically inhibited by both Diprotin A and B, non-competitively, generating a K(i) of 1.4 x 10(-4) M for both inhibitors. Ile-Thiazolidide and Ile-Pyrrolidide both inhibited competitively with an inhibition constant of 3.7 x 10(-7) and 7.5 x 10(-7) M, respectively. It is concluded that bovine serum DPIV-like activity share many biochemical properties with DPIV and DPIV-like enzymes but not exclusively, suggesting that the purified peptidase may play an important novel role in bioactive oligopeptide degradation.  相似文献   

16.
During export of the outer membrane lipoprotein across the cytoplasmic membrane, the signal peptide of the lipoprotein undergoes two successive proteolytic attacks, cleavage of the signal peptide by signal peptidase and digestion of the cleaved signal peptide by an enzyme called signal peptide peptidase(s) (Hussain, M., Ichihara, S., and Mizushima, S. (1982) J. Biol. Chem. 257, 5177-5182; Hussain, M., Ozawa, Y., Ichihara, S., and Mizushima, S. (1982) Eur. J. Biochem. 129, 233-239). Here we report that protease IV, a cytoplasmic membrane protease, exhibits the signal peptide peptidase activity. The signal peptide peptidase activity was cofractionated with protease IV throughout the entire process of purification of the latter enzyme. Only the signal peptide was digested by the peptidase among membrane proteins. Both the signal peptide peptidase activity and the protease IV activity were inhibited to similar degrees by antipain, leupeptin, chymostatin, and elastatinal that are known to inhibit the signal peptide peptidase activity in the cell envelope. From these results we conclude that protease IV is the signal peptide peptidase that is responsible for signal peptide digestion in the cytoplasmic membrane. The peptidase attacked the signal peptide only after its release from the precursor protein.  相似文献   

17.
The Nb2 cell line is a pre-T rat lymphoma that is dependent on prolactin (PRL) for mitogenesis. Two forms of PRL receptor (PRL-R), which differ in the length of their cytoplasmic domains have been identified in different tissues and species. In the present study we have cloned the cDNA and characterized the mitogenic form of PRL-R in Nb2 cells. Polymerase chain reaction amplification of first strand cDNA prepared from Nb2-11C (PRL-dependent) and Nb2-Sp (PRL-independent) cell lines was performed using oligonucleotide primers specific for the binding domain, the short form of the PRL-R, and the cytoplasmic domain of the long form of the PRL-R. These studies indicate that both cell lines express a novel form of PRL-R. A cDNA was isolated from an Nb2-Sp cDNA library, which contains 1446 base pairs identical to the nucleotide sequence of the long form of the rat PRL-R. However, the cDNA sequence is missing 594 base pairs in the cytoplasmic domain compared with the long form of the PRL-R. The cDNA encodes a protein of 393 amino acids, lacking 198 amino acids in the cytoplasmic domain. Scatchard analysis of 125I-labeled ovine prolactin (oPRL) binding to microsomes prepared from transiently transfected COS-7 cells with either PRL-R long form cDNA or Nb2 PRL-R cDNA indicates that the long form of PRL-R binds oPRL with high affinity (K alpha = 8.8 x 10(9) M-1), while the Nb2 PRL-R showed a 3.3-fold increased affinity for PRL (K alpha = 29.1 x 10(9) M-1). In addition, immunoblot analysis of these microsomes using 125I-labeled monoclonal antibody (U6) to the PRL-R demonstrates a Mr of approximately 82,000 for the long form and approximately 62,000 for the Nb2 form of PRL-R. Polymerase chain reaction amplification of genomic DNA prepared from PRL-dependent and -independent cell lines suggests that this form of PRL-R results from a deletion in the PRL-R gene. The identification of a modified long form of PRL-R in the Nb2 cell line should help localize domains of the PRL-R involved in signal transduction and further the investigation of prolactin's role in immune cell proliferation.  相似文献   

18.
We recently observed that specific inhibitors of post-proline cleaving aminodipeptidases cause apoptosis in quiescent lymphocytes in a process independent of CD26/dipeptidyl peptidase IV. These results led to the isolation and cloning of a new protease that we have termed quiescent cell proline dipeptidase (QPP). QPP activity was purified from CD26(-) Jurkat T cells. The protein was identified by labeling with [(3)H]diisopropylfluorophosphate and subjected to tryptic digestion and partial amino acid sequencing. The peptide sequences were used to identify expressed sequence tag clones. The cDNA of QPP contains an open reading frame of 1476 base pairs, coding for a protein of 492 amino acids. The amino acid sequence of QPP reveals similarity with prolylcarboxypeptidase. The putative active site residues serine, aspartic acid, and histidine of QPP show an ordering of the catalytic triad similar to that seen in the post-proline cleaving exopeptidases prolylcarboxypeptidase and CD26/dipeptidyl peptidase IV. The post-proline cleaving activity of QPP has an unusually broad pH range in that it is able to cleave substrate molecules at acidic pH as well as at neutral pH. QPP has also been detected in nonlymphocytic cell lines, indicating that this enzyme activity may play an important role in other tissues as well.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号