首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated the effects of hyperosmolarity induced by sucrose on the fluid phase endocytosis of the fluorescent dye lucifer yellow CH (LY) and the endocytosis of 125I-asialo-orosomucoid (ASOR) by the galactosyl receptor system in isolated rat hepatocytes. Continuous uptake of LY by cells at 37 degrees C is biphasic, occurs for 3-4 h, and then plateaus. Permeabilized cells or crude membranes do not bind LY at 4 or 37 degrees C. Intact cells also do not accumulate LY at 4 degrees C. The rate and extent of LY accumulation are concentration- and energy-dependent, and internalized LY is released from permeabilized cells. Efflux of internalized LY from washed cells is also biphasic and occurs with halftimes of approximately 38 and 82 min. LY is taken up into vesicles throughout the cytoplasm and the perinuclear region with a distribution pattern typical of the endocytic pathway. LY, therefore, behaves as a fluid phase marker in hepatocytes. LY has no effect on the uptake of 125I-ASOR at 37 degrees C. The rate of LY uptake by cells in suspension is not affected for at least 30 min by up to 0.2 M sucrose. The rate of endocytosis of 125I-ASOR, however, is progressively inhibited by increasing the osmolality of the medium with sucrose (greater than 98% with 0.2 M sucrose; Oka and Weigel (1988) J. Cell. Biochem. 36, 169-183). Hyperosmolarity completely inhibits endocytosis of 125I-ASOR by the galactosyl receptor, whereas fluid phase endocytosis of LY is unaffected. Cultured hepatocytes contained about 100 coated pits/mm of apical membrane length as assessed by transmission electron microscopy. In the presence of 0.4 M sucrose, only 17 coated pits/mm of membrane were observed, an 83% decrease. Only a few percent of the total cellular fluid phase uptake in hepatocytes is due to the coated pit endocytic pathway. We conclude that the fluid phase and receptor-mediated endocytic processes must operate via two separate pathways.  相似文献   

2.
In vitro fusion of endosomes following receptor-mediated endocytosis   总被引:25,自引:0,他引:25  
Receptor-mediated endocytosis and receptor recycling involve a series of intracellular membrane fusion events that appear to play an important role in the regulation of the overall rate and efficiency of the process. An endosome-endosome fusion assay is described using two ligands that (i) rapidly and efficiently enter the endosomal compartment via the macrophage mannose receptor and (ii) that mutually recognize each other. Dinitrophenol-derivatized beta-glucuronidase (DNP-beta-glucuronidase), a ligand for the mannose receptor, was endocytosed by one population of J774 E clone cells, and mannose-derivatized monoclonal anti-DNP IgG (Man-IgG) was internalized by a second set of cells. Both ligands were localized in endosomes as determined by fractionation on Percoll gradients. Incubation of vesicles prepared from the two set of cells resulted in vesicle fusion as indicated by the formation of DNP-beta-glucuronidase-Man-IgG complexes. Under standard conditions, fusion was time-, ATP-, and temperature-dependent. KCl was required for fusion. Fusion required both cytosolic- and membrane-associated proteins. N-Ethylmaleimide treatment of cytosol inhibited fusion. Proton ionophores and amines had no effect on the fusion reaction. ATP-dependent fusion was only observed between early endocytic compartments. While in the presence of a Ca2+ chelator fusion was ATP-dependent, in its absence fusion was also observed in an ATP-independent fashion.  相似文献   

3.
In ciliated protozoa, most nutrients are internalized via phagocytosis by food vacuole formation at the posterior end of the buccal cavity. The uptake of small-sized molecules and external fluid through the plasma membrane is a localized process. That is because most of the cell surface is internally covered by an alveolar system and a fibrous epiplasm, so that only defined areas of the cell surface are potential substance uptake sites. The purpose of this study is to analyze, by fluorescence confocal laser scanning microscopy, the relationship between WGA (Triticum vulgaris agglutinin) and dextran internalization in Paramecium primaurelia cells blocked in the phagocytic process, so that markers could not be internalized via food vacuole formation. WGA, which binds to surface constituents of fixed and living cells, was used as a marker for membrane transport and dextran as a marker for fluid phase endocytosis. After 3 min incubation, WGA-FITC is found on plasma membrane and cilia, and successively within small cytoplasmic vesicles. After a 10-15 min chase in unlabeled medium, the marked vesicles decrease in number, increase in size and fuse with food vacuoles. This fusion was evidenced by labeling food vacuoles with BSA-Texas red. Dextran enters the cell via endocytic vesicles which first localize in the cortical region, under the plasma membrane, and then migrate in the cytoplasm and fuse with other endocytic vesicles and food vacuoles. When cells are fed with WGA-FITC and dextran-Texas red at the same time, two differently labeled vesicle populations are found. Cytosol acidification and incubation in sucrose medium or in chlorpromazine showed that WGA is internalized via clathrin vesicles, whereas fluid phase endocytosis is a clathrin-independent process.  相似文献   

4.
We have shown recently that isoproterenol affects both the cellular location and the morphology of late endosomes in a pH-dependent manner [Marjom?ki et al., Eur. J. Cell Biol. 65, 1-13 (1994)]. In this study, using fluorescence and quantitative electron microscopy, we wanted to examine further what is the fate of internalized markers during their translocation from early to late endosomes under isoproterenol treatment. Fluorescein dextran internalized for 30 min (10-min pulse followed by a 20-min chase) showed accumulation in the cellular periphery during isoproterenol treatment in contrast to the control cells, which accumulated dextran in the perinuclear region. Quantitative electron microscopy showed that the markers accumulated in the early endosomes and putative carrier vesicles. In addition, different particulate markers that were internalized sequentially accumulated in similar structures due to the isoproterenol treatment, altogether suggesting that isoproterenol retards the translocation of markers to the later structures. Prelabelling of the late endosomes with fluorescent dextran or BSA-coated gold particles showed that isoproterenol causes a reduction of the mean size of the prelabelled late endosomes as well as a shift of these vesicles to the cellular periphery. Isoproterenol had no apparent effect on the morphology nor on the location of lysosomes. Percoll fractionation showed that the changes in late endosomal location and morphology did not change their characteristic density. Furthermore, electron microscopy showed that, in the cellular periphery, these late endosomal elements did not fuse with early endosomal structures, which is in agreement with the results of biochemical in vitro cell-free assays carried out by others. In conclusion, the results show that isoproterenol inhibits transport from early to late endosomes in a manner that may be pH- and/or Ca(2+)-dependent. Simultaneously, isoproterenol causes fragmentation of the late endosomal compartment and the shift of these fragments to the cellular periphery, where they have a restricted ability to fuse with earlier endosomal structures.  相似文献   

5.
The mechanism of receptor-mediated endocytosis.   总被引:22,自引:0,他引:22  
  相似文献   

6.
BACKGROUND: In contrast to the intense attention devoted to research on intracellular sterol trafficking in animal cells, knowledge about sterol transport in plant cells remains limited, and virtually nothing is known about plant endocytic sterol trafficking. Similar to animals, biosynthetic sterol transport occurs from the endoplasmic reticulum (ER) via the Golgi apparatus to the plasma membrane. The vesicle trafficking inhibitor brefeldin A (BFA) has been suggested to disrupt biosynthetic sterol transport at the Golgi level. RESULTS: Here, we report on early endocytic sterol trafficking in Arabidopsis root epidermal cells by introducing filipin as a tool for fluorescent sterol detection. Sterols can be internalized from the plasma membrane and localize to endosomes positive for the early endosomal Rab5 GTPase homolog ARA6 fused to green fluorescent protein (GFP) (ARA6-GFP). Early endocytic sterol transport is actin dependent and highly BFA sensitive. BFA causes coaccumulation of sterols, endocytic markers like ARA6-GFP, and PIN2, a polarly localized presumptive auxin transport protein, in early endosome agglomerations that can be distinguished from ER and Golgi. Sterol accumulation in such aggregates is enhanced in actin2 mutants, and the actin-depolymerizing drug cytochalasin D inhibits sterol redistribution from endosome aggregations. CONCLUSIONS: Early endocytic sterol trafficking involves transport via ARA6-positive early endosomes that, in contrast to animal cells, is actin dependent. Our results reveal sterol-enriched early endosomes as targets for BFA interference in plants. Early endocytic sterol trafficking and recycling of polar PIN2 protein share a common pathway, suggesting a connection between plant endocytic sterol transport and polar sorting events.  相似文献   

7.
In general, receptors are involved in pathways of endocytosis, either constitutive or ligand induced. These receptors cluster in clathrin-coated pits, enter the cell via clathrin-coated vesicles, pass through an acidified endosome in which the receptors and ligands are sorted, and then either recycle to the cell surface, become stored intracellularly, or are degraded in lysosomes. The internalization pathways serve a variety of functions, such as nutrient uptake, removal of activated proteins, clearance of macromolecules, opportunistic entry of certain viruses and toxins, dissociation and degradation of ligand, and receptor-level regulation. Many receptors follow more than one intracellular pathway, depending on the cell type, receptor concentration, type of ligand, ligand valency, and ligand concentration. Although endocytosis is common to all nucleated eukaryotic cells, the factors that regulate these receptor-mediated endocytic pathways are not fully understood. Defective receptors that are not capable of undergoing normal endocytosis can lead to certain disease states, as in the case of familial hypercholesteremia (FH). This review has three objectives: (i) to describe the different routes that receptors and ligands follow after internaliation; (ii) to describe the potential mechanisms which regulate the initiation and subsequent sorting of receptors and ligands so they reach their final destination; and (iii) to describe the potential functions of receptor-mediated endocytosis.  相似文献   

8.
Lakadamyali M  Rust MJ  Zhuang X 《Cell》2006,124(5):997-1009
Cells rely on the correct sorting of endocytic ligands and receptors for proper function. Early endosomes have been considered as the initial sorting station where cargos for degradation separate from those for recycling. Using live-cell imaging to monitor individual endosomes and ligand particles in real time, we have discovered a sorting mechanism that takes place prior to early endosome entry. We show that early endosomes are in fact comprised of two distinct populations: a dynamic population that is highly mobile on microtubules and matures rapidly toward late endosomes and a static population that matures much more slowly. Several cargos destined for degradation are preferentially targeted to the dynamic endosomes, whereas the recycling ligand transferrin is nonselectively delivered to all early endosomes and effectively enriched in the larger, static population. This pre-early endosome sorting process begins at clathrin-coated vesicles, depends on microtubule-dependent motility, and appears to involve endocytic adaptors.  相似文献   

9.
Late endosomes derive from early endosomes by maturation.   总被引:34,自引:0,他引:34  
Endocytosed proteins destined for degradation in lysosomes are targeted mainly to early endosomes following uptake. Late endosomes are the major site for entry of newly synthesized lysosomal hydrolases via the cation-independent mannose 6-phosphate receptor into the degradative pathway. No consensus exists as to the mechanism of transport from early to late endosomes. We used asialoorosomucoid and transferrin to label selected parts of the degradative and receptor-recycling pathways, respectively, in the human hepatoma cell line HepG2. Intracellular mixing of sequentially endocytosed 125I- and HRP-labeled ligands was monitored by using 3,3'-diaminobenzidine-mediated density perturbation. The entire endocytic pathway of asialoorosomucoid, except for the lysosomes, remained fully accessible to subsequently endocytosed transferrin conjugated to HRP with unchanged kinetics. These results together with immunoelectron microscopic data support a model in which early endosomes gradually mature into late endosomes.  相似文献   

10.
The scavenger receptor recognized as a multiligand family of receptors falls in the group that is internalised through endocytosis. In this report we used several recombinant fragments of the tapeworm protein paramyosin, known to form filamentous dimers that bind collagenous structures as ligands of different length for the class A type I scavenger receptor (SR-AI). While native CHO cells are unresponsive to any of the recombinant fragments, it is shown that CHO cells transfected with this receptor efficiently internalise recombinant fragments that correspond to two thirds of the full-length paramyosin. In contrast, recombinant products corresponding to one-third of the full-length paramyiosin are not internalised. It is also shown that important molecules in the organization of the coated pit, are enriched when the two-thirds long paramyosin fragments were bound and internalised through the SR-AI. Moreover, internalisation of these fragments trigger a classical apoptotic pathway shown by the presence of TUNEL positive cells and the appearance of apoptotic bodies. We report paramyosin as a new ligand for the scavenger receptor and provide evidence supporting the notion that these receptors upon the formation of arrays with length-specific molecules, not only trigger endocytosis but also seem to regulate the synthesis of molecules involved in the organization of coated pits. (Mol Cell Biochem 271: 123–132, 2005)  相似文献   

11.
Upon agonist stimulation, many G protein-coupled receptors such as beta(2)-adrenergic receptors are internalized via beta-arrestin- and clathrin-dependent mechanisms, whereas others, like M(2) muscarinic acetylcholine receptors (mAChRs), are internalized by clathrin- and arrestin-independent mechanisms. To gain further insight into the mechanisms that regulate M(2) mAChR endocytosis, we investigated the post-endocytic trafficking of M(2) mAChRs in HeLa cells and the role of the ADP-ribosylation factor 6 (Arf6) GTPase in regulating M(2) mAChR internalization. Here, we report that M(2) mAChRs are rapidly internalized by a clathrin-independent pathway that is inhibited up to 50% by expression of either GTPase-defective Arf6 Q67L or an upstream Arf6 activator, Galpha(q) Q209L. In contrast, M(2) mAChR internalization was not affected by expression of dominant-negative dynamin 2 K44A, which is a known inhibitor of clathrin-dependent endocytosis. Nevertheless, M(2) mAChRs, which are initially internalized in structures that lack clathrin-dependent endosomal markers, quickly localize to endosomes that contain the clathrin-dependent, early endosomal markers early endosome autoantigen-1, transferrin receptor, and GTPase-defective Rab5 Q79L, which is known to swell early endosomal compartments. These results suggest that M(2) mAChRs initially internalize via an Arf6-associated, clathrin-independent pathway but then quickly merge with the clathrin endocytic pathway at the level of early endosomes.  相似文献   

12.
Our previous paper (Rodionov et al., 1985) reported production of monoclonal antibodies RN-17 reacting in cultured fibroblasts with a protein having a molecular weight of 100 kD. Immunofluorescence and immunoelectron microscopy showed that this protein was a component of microtubules, intermediate filaments and coated vesicles. We challenged a possibility whether these coated vesicles containing the 100 kD protein may take part in the receptor-mediated endocytosis. alpha 2-Macroglobulin conjugated with fluorescein isothiocyanate or 20 nm colloidal gold particles was used as a marker of the receptor-mediated endocytosis. Mouse embryo fibroblasts or Swiss 3T3 cells were incubated with labeled alpha 2 M, fixed and "stained" with DN-17 antibody, and the distribution of alpha 2 M and 100 kD protein was examined within the same cells. In both cell lines the endocytic vesicles contained 100 kD protein and alpha 2 M. Therefore 100 kD protein is a component of endocytic vesicles. Probably this protein mediates microtubule-dependent transport of endocytic vesicles in the cells.  相似文献   

13.
By fluorescence spectroscopy, the average pH within endocytic compartments was determined during endocytosis of fluorescein conjugates by macrophages and hepatocytes. In mouse macrophages and hepatocytes fluorescein conjugates taken up either in the fluid phase or by binding to cell surface receptors were rapidly transferred to an acidic compartment (pH 5-5.5). The half-time for this process was generally less than 4 min. The pH within yeast-containing phagosomes was also rapidly reduced to similar levels, following a unique and transient increase. In each case, the acid endosomal compartments involved probably do not contain lysosomal enzymes. When fluorescein conjugates of asialoglycoproteins were internalised by hepatocytes at 20 degrees C, no proteolysis occurred within the acidic endosome until the temperature was raised. Fluorescein conjugates of concanavalin A (conA) and polylysine were relatively more slowly internalised by macrophages. The half-times for uptake, estimated by fluorescence change, were comparable with the turnover time for bulk plasma membrane. The relatively high average pH experienced by these conjugates indicated that a small proportion of these non-specific cell-surface labels was always in contact with the extracellular medium.  相似文献   

14.
Histologic and electron microscopic examination of liver tissue from glucocorticoid-treated dogs (GT dogs) showed a markedly abnormal hepatocellular morphology which consisted of severe hepatocellular swelling, vacuolation, and peripheral displacement of subcellular organelles. The abnormal cell morphology was typical of that seen in clinical cases of canine Cushing's Syndrome. The hepatocyte isolation procedure used here works equally well for the preparation of viable hepatocytes from both normal and GT dogs even though GT dogs displayed a pronounced hepatopathy. Cell yields (10(9) cells from a 30-cm3 section of liver) are similar to those reported for rat hepatocytes using whole liver in situ perfusion and cell viability is routinely greater than 85%. The isolation procedure preserved the "abnormal" state or swollen morphology of the hepatocytes from GT dogs and thus can be used in pathophysiological studies of glucocorticoid-induced hepatopathy. The isolated hepatocytes were 3.2 times greater in cell volume than normal hepatocytes. We also observed over a 12.3-fold increase in alkaline phosphatase activity and the appearance in both the liver and the serum of GT dogs of the unique, corticosteroid alkaline phosphatase isozyme (CALP). In spite of the obvious abnormal liver morphology and elevated serum and liver alkaline phosphatase activities, the function of the hepatic cell surface carbohydrate binding protein, the Gal/GalNAc or asialoglycoprotein receptor, was not impaired. We found a trend of about a 1.5-fold increase in the initial rate of ligand uptake as well as 1.6-fold more receptors on GT dog hepatocytes compared to normal hepatocytes. The ligand binding affinity of these receptors, as well as the rate of ligand degradation, was identical in hepatocytes isolated from normal and diseased dogs. When intestinal alkaline phosphatase (IALP) is used as the ligand, approximately 25% was exocytosed intact following endocytosis. These results demonstrate that dogs with glucocorticoid hepatopathy possess a normally functioning Gal/GalNAc receptor. Furthermore, these data are consistent with the hypothesis that structurally related IALP and CALP isozymes may also be metabolically related through the Gal/GalNAc receptor endocytosis pathway. That is, a portion of the IALP normally endocytosed through the Gal/GalNAc receptor pathway in glucocorticoid-treated dogs may be recycled and converted (hyperglycosylated) to the abnormal serum CALP isozyme rather than being degraded.  相似文献   

15.
Antibodies raised to human placental beta-glucuronidase were shown to cross-react with the beta-glucuronidase secreted by mouse 3T3 fibroblasts, but did not react with other lysosomal enzymes. The beta-glucuronidase secreted by 3T3 cells was purified 15000-fold by chromatography on an affinity column made from this antibody and resolved into a single component, of Mr 68000, by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Iodinated samples of purified enzyme were taken up into mouse peritoneal macrophages by receptor-mediated endocytosis at a rate similar to that calculated previously for unlabelled enzyme, and uptake was competitively inhibited by yeast mannan. Binding of beta-glucuronidase to macrophages was saturable, with a Kd of 7 X 10(-9)l/mol, an affinity comparable with that calculated for the binding of mannosylated bovine serum albumin (Kd 1.3 X 10(-9)l/mol), a ligand specific for mannose receptors. Four times as many molecules of mannosylated albumin (12000) as of beta-glucuronidase (3000), however, bound to each cell. This purification and iodination procedure did not therefore have any adverse effect on the uptake properties of secreted beta-glucuronidase, and provides a ligand with which to investigate binding and specific endocytosis into a range of different types of cell.  相似文献   

16.
17.
Cell-free assays and the mechanism of receptor-mediated endocytosis   总被引:4,自引:0,他引:4  
The increasing ease with which complex cellular functions can be observed and cell-free systems is making it possible to unravel the mechanism of receptor-mediated endocytosis.  相似文献   

18.
Receptor-mediated endocytosis occurs via clathrin-coated pits and is therefore coupled to the dynamic cycle of assembly and disassembly of the coat constituents. These coat proteins comprise part, but certainly not all, of the machinery involved in the recognition of membrane receptors and their selective packaging into transport vesicles for internalization. Despite considerable knowledge about the biochemistry of coated vesicles and purified coat proteins, little is known about the mechanisms of coated pit assembly, receptor-sorting and coated vesicle formation. Cell-free assays which faithfully reconstitute these events provide powerful new tools with which to elucidate the overall mechanism of receptor-mediated endocytosis.  相似文献   

19.
The endocytosis of enterokinase by rat hepatocytes has been studied both in a perfused liver system and in the intact, anaesthetised animal. 10 min after administration of the enzyme, only 70% of the activity was cleared by the perfused liver, whereas clearance was total in the intact animal. In both cases, about 85% of the internalised enzyme co-purified with the smooth microsomes and virtually all (more than 90%) of the catalytic activity was latent and could only be detected in the presence of detergent. After 10 min, 22.5% of the activity remained with the sinusoidal plasma membrane in the case of the perfused liver, while for the intact animal this figure was only 10%, confirming the more efficient clearance of enterokinase in the intact animal. Further subcellular fractionation showed that in the anaesthetised animal 8% of the internalised enzyme was associated with a low-density Golgi-like endosomal compartment (prepared from the mitochondrial pellet), whereas the corresponding value for the perfused liver was only 2.5%. Enterokinase specific activity was also up to 50-times greater in the low-density endosomes prepared from the intact animal. A second low-density Golgi-like compartment (purified from the smooth microsomes) also contained latent enterokinase, which together with the endosomes derived from the mitochondria accounted for 20% of the total enterokinase internalised by the liver 10 min after its administration to the intact animal. The passage of enterokinase through these two low-density compartments was shown not to be synchronous with its passage through the peripheral (sinusoidal membrane) and internal endosomes (smooth microsomes). There were qualitative differences in marker enzymes and polypeptide composition between the mitochondria and microsome-derived low-density endosomes. The sub-fractionation of low-density fractions on shallow sucrose gradients revealed a complex enzyme and polypeptide heterogeneity both between and within fractions. There was an apparent density-dependent separation of enterokinase from galactosyltransferase and the asialoglycoprotein receptor which was coincident with marked changes in the polypeptide composition of the endosomal membranes, particularly in the 30-45 kDa range.  相似文献   

20.
Summary The function of intracellular transglutaminases remains to be clarified. In fibroblasts the links between the activity of this enzyme and receptor-mediated endocytosis are complex and open to interpretation. However, the issue cannot be firmly laid to rest until the structural specificity of the alkylamine inhibitors of endocytosis is explained. In macrophages, there is substantial evidence that the enzyme plays some role in receptor-mediated phagocytosis, but what this role is and how it might relate to endocytosis in other types of cells is at present an unresolved issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号