首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A locus encoding two repetitive proteins that have LPXTG cell wall anchoring signals from Lactobacillus fermentum BR11 has been identified by using an antiserum raised against whole L. fermentum BR11 cells. The first protein, Rlp, is similar to the Rib surface protein from Streptococcus agalactiae, while the other protein, Mlp, is similar to the mucus binding protein Mub from Lactobacillus reuteri. It was shown that multiple copies of mlp exist in the genome of L. fermentum BR11. Regions of Rlp, Mlp, and the previously characterized surface protein BspA were used to surface display or secrete heterologous peptides in L. fermentum. The peptides tested were 10 amino acids of the human cystic fibrosis transmembrane regulator protein and a six-histidine epitope (His(6)). The BspA promoter and secretion signal were used in combination with the Rlp cell wall sorting signal to express, export, and covalently anchor the heterologous peptides to the cell wall. Detection of the cell surface protein fusions revealed that Rlp was a significantly better surface display vector than BspA despite having lower cellular levels (0.7 mg per liter for the Rlp fusion compared with 4 mg per liter for the BspA fusion). The mlp promoter and encoded secretion signal were used to express and export large (328-kDa at 10 mg per liter) and small (27-kDa at 0.06 mg per liter) amino-terminal fragments of the Mlp protein fused to the His(6) and CFTR peptides or His(6) peptide, respectively. Therefore, these newly described proteins from L. fermentum BR11 have potential as protein production and targeting vectors.  相似文献   

2.
The BspA protein of Lactobacillus fermentum BR11 (BR11) is a cell envelope constituent that is similar to known solute-binding proteins and putative adhesins. BspA is required for L-cystine uptake and oxidative defense and is likely to be an L-cystine-binding protein. The aim of this study was to directly measure L-cystine-BspA binding and BspA expression. De-energized BR11 cells bound radiolabelled L-cystine with a Kd of 0.2 M. A bspA mutant could not bind L-cystine. L-cystine-BR11 binding was unaffected by large excesses of L-glutamine, L-methionine, or collagen, indicating L-cystine specificity. BR11 and the bspA mutant were identical in their abilities to bind L-cysteine, indicating that L-cysteine is not a BspA ligand. BspA expression levels were deduced from radiolabelled L-cystine binding and it was found that there are 1–2 × 105 BspA molecules per cell, and that expression is slightly higher under oxidizing conditions. It is proposed that BspA be renamed CyuC.  相似文献   

3.
Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria.  相似文献   

4.
BspA is a non-covalently anchored cystine-binding protein from Lactobacillus fermentum BR11. It has previously been used to present antigens derived from infectious organisms on the L. fermentum BR11 cell surface. In this study, the capacity of BspA to present a very large polypeptide was tested. A temperature sensitive plasmid was constructed that encodes a 175-kDa chimeric protein consisting of a fusion between BspA and an N-terminally truncated derivative of the Streptococcus salivarius ATCC 25975 glucosyltransferase GtfJ. This plasmid was introduced into the L. fermentum genome. Integrants were able to incorporate 20-40 nmol sucrose derived glucose into glucan per ml culture per optical density unit. The glucosyltransferase activity was external to the cytoplasmic membrane and bound to the cell. Unlike native BspA, the BspA-GtfJ fusion could not be removed from the cell by 5 M LiCl wash.  相似文献   

5.
Extraction of Lactobacillus fermentum BR11 cells with 5 M LiCl yielded a preparation containing a single predominant polypeptide with an apparent molecular mass of 32 kDa. A clone encoding an immunoreactive 32-kDa polypeptide was isolated from a pUC18 library of L. fermentum BR11 DNA by screening with an antiserum raised against whole cells of L. fermentum BR11. Sequence determination of the insert in the clone revealed a complete 795-bp open reading frame (ORF) that defines a 28,625-Da polypeptide (BspA). N-terminal sequencing of the LiCl-extracted polypeptide from L. fermentum BR11 confirmed that it is the same as the cloned BspA. BspA was found to have a sequence similar to those of family III of the bacterial solute-binding proteins. The sequences of two ORFs upstream of bspA are consistent with bspA being located in an operon encoding an ATP-binding cassette-type uptake system. Unusually, BspA contains no lipoprotein cleavage and attachment motif (LXXC), despite its origin in a gram-positive bacterium. Biotin labelling and trypsin digestion of whole cells indicated that this polypeptide is exposed on the cell surface. The isoelectric point as predicted from the putative mature sequence is 10.59. It was consequently hypothesized that the positively charged BspA is anchored by electrostatic interaction with acidic groups on the cell surface. It was shown that BspA could be selectively removed from the surface by extraction with an acidic buffer, thus supporting this hypothesis.  相似文献   

6.
BspA is a basic surface-exposed protein from Lactobacillus fermentum BR11. Sequence comparisons have shown that it is a member of family III of the solute binding proteins. It is 89% identical to the collagen binding protein, Cnb, from Lactobacillus reuteri. Compared with the database of Escherichia coli proteins, BspA is most similar to the L-cystine binding protein FliY. To investigate the function of BspA, mutants depleted for BspA were generated by homologous recombination with a temperature-sensitive plasmid. These mutants were significantly impaired in their abilities to take up L-cystine. Uptake rates of L-glutamine, L-histidine, and L-lysine, which are substrates for other binding proteins with similarity to BspA, were unaffected. Evidence was obtained that BspA is necessary for maximal resistance to oxidative stress. Specifically, inactivation of BspA causes defective growth in the presence of oxygen and sensitivity to paraquat. Measurements of sulfhydryl levels showed that incubation of L. fermentum BR11 with L-cystine resulted in increased levels of sulfhydryl groups both inside and outside the cell; however, this was not the case with a BspA mutant. The role of BspA as an extracellular matrix protein adhesin was also addressed. L. fermentum BR11 does not bind to immobilized type I collagen or laminin above background levels but does bind immobilized fibronectin. Inactivation of BspA did not significantly affect fibronectin binding; therefore, we have not found evidence to support the notion that BspA is an extracellular matrix protein binding adhesin. As BspA is most probably not a lipoprotein, this report provides evidence that gram-positive bacterial solute binding proteins do not necessarily have to be anchored to the cytoplasmic membrane to function in solute uptake.  相似文献   

7.
An adhesion-promoting protein involved in the binding of Lactobacillus fermentum strain 104R to small intestinal mucus from piglets and to partially purified gastric mucin was isolated and characterized. Spent culture supernatant fluid and bacterial cell wall extracts were fractionated by ammonium sulfate precipitation and gel filtration. The active fraction was purified by affinity chromatography. The adhesion-promoting protein was detected in the fractions by adhesion inhibition and dot blot assays and visualized by polyacrylamide gel electrophoresis (PAGE), sodium dodecyl sulfate-PAGE, and Western blotting with horseradish peroxidase-labeled mucus and mucin. The active fraction was characterized by estimating the relative molecular weight and by assessing the presence of carbohydrates in, and heat sensitivity of, the active region of the adhesion-promoting protein. The purified protein was digested with porcine trypsin, and the peptides were purified in a SMART system. The peptides were tested for adhesion to horseradish peroxidase-labeled mucin by using the dot blot adhesion assay. Peptides which bound mucin were sequenced. It was shown that the purified adhesion-promoting protein on the cell surface of L. fermentum 104R is extractable with 1 M LiCl and low concentrations of lysozyme but not with 0.2 M glycine. The protein could be released to the culture supernatant fluid after 24 h of growth and had affinity for both small intestinal mucus and gastric mucin. In the native state this protein was variable in size, and it had a molecular mass of 29 kDa when denatured. The denatured protein did not contain carbohydrate moieties and was not heat sensitive. Alignment of amino acids of the adhering peptides with sequences deposited in the EMBL data library showed poor homology with previously published sequences. The protein represents an important molecule for development of probiotics.  相似文献   

8.
The objective of this study was to evaluate the effect of human gut-derived lactic acid bacteria and bifidobacteria on cholesterol levels in vitro. Continuous cultures inoculated with fecal material from healthy human volunteers with media supplemented with cholesterol and bile acids were used to enrich for potential cholesterol assimilators among the indigenous bacterial populations. Seven potential probiotics were found: Lactobacillus fermentum strains F53 and KC5b, Bifidobacterium infantis ATCC 15697, Streptococcus bovis ATCC 43143, Enterococcus durans DSM 20633, Enterococcus gallinarum, and Enterococcus faecalis. A comparative evaluation regarding the in vitro cholesterol reduction abilities of these strains along with commercial probiotics was undertaken. The degree of acid and bile tolerance of strains was also evaluated. The human isolate L. fermentum KC5b was able to maintain viability for 2 h at pH 2 and to grow in a medium with 4,000 mg of bile acids per liter. This strain was also able to remove a maximum of 14.8 mg of cholesterol per g (dry weight) of cells from the culture medium and therefore was regarded as a candidate probiotic.  相似文献   

9.
We developed a new cell surface engineering system based on the PgsA anchor protein from Bacillus subtilis. In this system, the N terminus of the target protein was fused to the PgsA protein and the resulting fusion protein was expressed on the cell surface. Using this new system, we constructed a novel starch-degrading strain of Lactobacillus casei by genetically displaying α-amylase from the Streptococcus bovis strain 148 with a FLAG peptide tag (AmyAF). Localization of the PgsA-AmyA-FLAG fusion protein on the cell surface was confirmed by immunofluorescence microscopy and flow cytometric analysis. The lactic acid bacteria which displayed AmyAF showed significantly elevated hydrolytic activity toward soluble starch. By fermentation using AmyAF-displaying L. casei cells, 50 g/liter of soluble starch was reduced to 13.7 g/liter, and 21.8 g/liter of lactic acid was produced within about 24 h. The yield in terms of grams of lactic acid produced per gram of carbohydrate utilized was 0.60 g per g of carbohydrate consumed at 24 h. Since AmyA was immobilized on the cells, cells were recovered after fermentation and used repeatedly. During repeated utilization of cells, the lactic acid yield was improved to 0.81 g per g of carbohydrate consumed at 72 h. These results indicate that efficient simultaneous saccharification and fermentation from soluble starch to lactic acid were carried out by recombinant L. casei cells with cell surface display of AmyA.  相似文献   

10.
Fructosyltransferases, like the Lactobacillus reteri levansucrase, are important for the production of new fructosyloligosaccharides. Various His6- and Strep-tagged variants of this enzyme were recombinantly produced and exported into the growth medium using the Gram-positive bacterium Bacillus megaterium. Nutrient-rich growth medium significantly enhanced levansucrase production and export. The B. megaterium signal peptide of the extracellular esterase LipA mediated better levansucrase export compared to the one of the penicillin amidase Pac. The combination of protein export via the LipA signal peptide with the coexpression of the signal peptidase gene sipM further increased the levansucrase secretion. Fused affinity tags allowed the efficient one-step purification of the recombinant proteins from the growth medium. However, fused peptide tags led to slightly decreased secretion of tested fusion proteins. After upscaling 2 to 3 mg affinity tagged levansucrase per liter culture medium was produced and exported. Up to 1 mg of His6-tagged and 0.7 mg of Strep-tagged levansucrase per liter were recovered by affinity chromatography. Finally, the purified levansucrase was shown to synthesize new fructosyloligosaccharides from the novel donor substrates d-Gal-Fru, d-Xyl-Fru, d-Man-Fru, and d-Fuc-Fru. R. Biedendieck and R. Beine contributed equally to this work.  相似文献   

11.
A multiple vector system for the production and export of recombinant affinity-tagged proteins in Bacillus megaterium was developed. Up to 1 mg/liter of a His6-tagged or Strep-tagged Lactobacillus reuteri levansucrase was directed into the growth medium, using the B. megaterium esterase LipA signal peptide, and recovered by one-step affinity chromatography.  相似文献   

12.
《Genomics》2020,112(6):3915-3924
The role of microbiota in gut-brain communication has led to the development of probiotics promoting brain health. Here we report a genomic study of a Lactobacillus fermentum PS150 and its patented bioactive protein, elongation factor Tu (EF-Tu), which is associated with cognitive improvement in rats. The L. fermentum PS150 circular chromosome is 2,238,401 bp and it consists of 2281 genes. Chromosome comparisons with other L. fermentum strains highlighted a cluster of glycosyltransferases as potential candidate probiotic factors besides EF-Tu. Molecular evolutionary analyses on EF-Tu genes (tuf) in 235 bacteria species revealed one to three copies of the gene per genome. Seven tuf pseudogenes were found and three species only possessed pseudogenes, which is an unprecedented finding. Protein variability analysis of EF-Tu showed five highly variable residues (40 K, 41G, 42 L, 44 K, and 46E) on the protein surface, which warrant further investigation regarding their potential roles as binding sites.  相似文献   

13.
Brucella abortus is a facultative intracellular gram-negative bacterial pathogen that infects humans and animals by entry mainly through the digestive tract. B. abortus causes abortion in pregnant cattle and undulant fever in humans. The immunogenic B. abortus ribosomal protein L7/L12 is a promising candidate antigen for the development of oral live vaccines against brucellosis, using food-grade lactic acid bacteria (LAB) as a carrier. The L7/L12 gene was expressed in Lactococcus lactis, the model LAB, under the nisin-inducible promoter. Using different signals, L7/L12 was produced in cytoplasmic, cell-wall-anchored, and secreted forms. Cytoplasmic production of L7/L12 gave a low yield, estimated at 0.5 mg/liter. Interestingly, a secretable form of this normally cytoplasmic protein via fusion with a signal peptide resulted in increased yield of L7/L12 to 3 mg/liter; secretion efficiency (SE) was 35%. A fusion between the mature moiety of the staphylococcal nuclease (Nuc) and L7/L12 further increased yield to 8 mg/liter. Fusion with a synthetic propeptide (LEISSTCDA) previously described as an enhancer for heterologous protein secretion in L. lactis (Y. Le Loir, A. Gruss, S. D. Ehrlich, and P. Langella, J. Bacteriol. 180:1895-1903, 1998) raised the yield to 8 mg/liter and SE to 50%. A surface-anchored L7/L12 form in L. lactis was obtained by fusing the cell wall anchor of Streptococcus pyogenes M6 protein to the C-terminal end of L7/L12. The fusions described allow the production and targeting of L7/L12 in three different locations in L. lactis. This is the first example of a B. abortus antigen produced in a food-grade bacterium and opens new perspectives for alternative vaccine strategies against brucellosis.  相似文献   

14.
Lactobacillus fermentum isolated from sourdough was able to produce riboflavin. Spontaneous roseoflavin-resistant mutants were obtained by exposing the wild strain (named L. fermentum PBCC11) to increasing concentrations of roseoflavin. Fifteen spontaneous roseoflavin-resistant mutants were isolated, and the level of vitamin B2 was quantified by HPLC. Seven mutant strains produced concentrations of vitamin B2 higher than 1 mg L?1. Interestingly, three mutants were unable to overproduce riboflavin even though they were able to withstand the selective pressure of roseoflavin. Alignment of the rib leader region of PBCC11 and its derivatives showed only point mutations at two neighboring locations of the RFN element. In particular, the highest riboflavin-producing isolates possess an A to G mutation at position 240, while the lowest riboflavin producer carries a T to A substitution at position 236. No mutations were detected in the derivative strains that did not have an overproducing phenotype. The best riboflavin overproducing strain, named L. fermentum PBCC11.5, and its parental strain were used to fortify bread. The effect of two different periods of fermentation on the riboflavin level was compared. Bread produced using the coinoculum yeast and L. fermentum PBCC11.5 led to an approximately twofold increase of final vitamin B2 content.  相似文献   

15.
Ribosome biogenesis requires >300 assembly factors in Saccharomyces cerevisiae. Ribosome assembly factors Imp3, Mrt4, Rlp7 and Rlp24 have sequence similarity to ribosomal proteins S9, P0, L7 and L24, suggesting that these pre-ribosomal factors could be placeholders that prevent premature assembly of the corresponding ribosomal proteins to nascent ribosomes. However, we found L7 to be a highly specific component of Rlp7-associated complexes, revealing that the two proteins can bind simultaneously to pre-ribosomal particles. Cross-linking and cDNA analysis experiments showed that Rlp7 binds to the ITS2 region of 27S pre-rRNAs, at two sites, in helix III and in a region adjacent to the pre-rRNA processing sites C1 and E. However, L7 binds to mature 25S and 5S rRNAs and cross-linked predominantly to helix ES7Lb within 25S rRNA. Thus, despite their predicted structural similarity, our data show that Rlp7 and L7 clearly bind at different positions on the same pre-60S particles. Our results also suggest that Rlp7 facilitates the formation of the hairpin structure of ITS2 during 60S ribosomal subunit maturation.  相似文献   

16.
Hybridizing of different antimicrobial peptides (AMPs) has been a common practice for obtaining novel hybrid AMPs with elevated antibacterial activity but minimized cytotoxicity. The hybrid peptides melittin (1-13)-LL37 (17-30) (M–L) combining the hydrophobic N-teriminal fragment of melittin (M) with the core antibacterial fragment of LL37 (L), was designed for the first time to explore its antibacterial activity and hemolytic activity against bacteria and sheep erythrocyte respectively. Results showed that M–L had an even more potent antibacterial activity against all indicator strains (especially gram-positive bacteria) than M and L, whereas didn’t exhibit hemolytic activity to sheep erythrocytes, implying M–L can be served as a potential therapeutic drug to substitute traditional antibiotics. However the high expense of biosynthesis limited its further research, therefore fusion expression of M–L was carried out in Escherichia coli (E. coli) for overproducing the hybrid peptide so as to solve the problem. The DNA sequence encoding M–L with preferred codons was cloned into the pET-SUMO vector for protein expression in E. coli BL21 (DE3). After IPTG induction, approximately 165 mg soluble fusion protein SUMO-M–L was recovered per liter supernatant of the fermentation ultrasonic lysate using Ni–NTA Sepharose column (92 % purity). And 23 mg recombinant M–L was obtained per liter culture after cleavage of SUMO protease and purification of Ni–NTA Sepharose column. In sum, this research not only supplied an effective approach for overproducing hybrid peptide M–L, but paved the way for its further exploration on pharmaceutical potential and medical importance.  相似文献   

17.
18.
This study investigated the purification and biochemical characterization of the protease produced by Lactobacillus fermentum R6 isolated from Harbin dry sausages. The optimized fermentation conditions were as follows: a fermentation time of 48 h, an initial pH of 6 and a fermentation temperature of 37 °C. The 37.7 kDa extracellular protease was purified using ammonium sulphate deposition, an ion exchange layer system and gel filtration. The protease produced by L. fermentum R6 had the highest initial velocity and kcat/Km at pH 6, 40 °C. The microbial protease activity could be inhibited by ethylene diamine tetraacetic acid disodium salt (EDTA). The Vmax and Km of the protease were 58.2 ± 1.42 mg/min and 17.3 ± 0.85 mg/mL, respectively. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) reflected the ability of the protease to hydrolyse myofibrillar and sarcoplasmic proteins, in particular, myosin heavy chain, paramyosin, phosphorylase and creatine kinase-M type. In conclusion, L. fermentum R6 can be used as a starter culture or an enzyme-producing strain for the inoculation of Harbin dry sausages.  相似文献   

19.
The transmembrane subunit (gp41) of the envelope glycoprotein of HIV‐1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR) of gp41 is highly conserved and contains epitopes of broadly neutralizing antibodies. The transmembrane (TM) domain of gp41 not only anchors the envelope glycoprotein complex in the viral membrane but also dynamically affects the interactions of the MPR with the membrane. While high‐resolution X‐ray structures of some segments of the MPR were solved in the past, they represent the post‐fusion forms. Structural information on the TM domain of gp41 is scant and at low resolution. Here we describe the design, expression and purification of a protein construct that includes MPR and the transmembrane domain of gp41 (MPR‐TMTEV‐6His), which reacts with the broadly neutralizing antibodies 2F5 and 4E10 and thereby may represent an immunologically relevant conformation mimicking a prehairpin intermediate of gp41. The expression level of MPR‐TMTEV‐6His was improved by fusion to the C‐terminus of Mistic protein, yielding ~1 mg of pure protein per liter. The isolated MPR‐TMTEV‐6His protein was biophysically characterized and is a monodisperse candidate for crystallization. This work will enable further investigation into the structure of MPR‐TMTEV‐6His, which will be important for the structure‐based design of a mucosal vaccine against HIV‐1.  相似文献   

20.
The Staphylococcus aureus surface protein G (SasG) is an important mediator of biofilm formation in virulent S. aureus strains. A detailed analysis of its primary sequence has not been reported to date. SasG is highly abundant in the cell wall of the vancomycin-intermediate S. aureus strain HIP5827, and was purified and subjected to sequence analysis by MS. Data from MALDI-TOF and LC-MS/MS experiments confirmed the predicted N-terminal signal peptide cleavage site at residue A51 and the C-terminal cell wall anchor site at residue T1086. The protein was also derivatized with N-succinimidyloxycarbonyl-methyl-tris(2,4,6-trimethoxyphenyl) phosphonium bromide (TMPP-Ac-OSu) to assess the presence of additional N-terminal sites of mature SasG. TMPP-derivatized SasG peptides featured m/z peaks with a 572 Da mass increase over the equivalent underivatized peptides. Multiple N-terminal peptides, all of which were observed in the 150 amino acid segment following the signal peptide cleavage at the residue A51, were characterized from MS and MS/MS data, suggesting a series of successive N-terminal truncations of SasG. A strategy combining TMPP derivatization, multiple enzyme digestions to generate overlapping peptides and detailed MS analysis will be useful to determine and understand functional implications of PTMs in bacterial cell wall-anchored proteins, which are frequently involved in the modulation of virulence-associated bacterial surface properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号