首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrolysis of Feather Keratin by Immobilized Keratinase   总被引:4,自引:0,他引:4       下载免费PDF全文
X. Lin  J. Shih    H. E. Swaisgood 《Applied microbiology》1996,62(11):4273-4275
Keratinase isolated from Bacillus licheniformis PWD-1 was immobilized on controlled-pore glass beads. The immobilized keratinase demonstrated proteolytic activities against both insoluble feather keratin and soluble casein. It also displayed a higher level of heat stability and an increased tolerance toward acidic pHs compared with the free keratinase. During a continuous reaction at 50(deg)C, the immobilized keratinase retained 40% of the original enzyme activity after 7 days. The immobilized keratinase exhibits improved stability, thereby increasing its potential for use in numerous applications.  相似文献   

2.
Infective endocarditis is often caused by passage of oral endogenous bacteria into the blood stream. Such bacteremia occurs after tooth extraction, and occasionally even after brushing of the teeth. Abnormal or damaged heart valves, including artificial valves, show high risk of infection. Antibiotics are widely used to prevent this infection, however, frequent use of these have resulted in the generation of resistant mutants, which generate serious social problems. Thus, the development of more effective and safer drugs for the prevention of such infections is very desirable. The adhesion of bacteria to fibronectin, one of the major extracellular matrix (ECM) protein exposed on the wound endocardia, is considered critical for the infection. We have previously found a novel mode of interaction between endocarditis-causing bacteria and human fibronectin. The present study focuses on the discovery of candidate compounds that inhibit the association between microorganisms and fibronectin. Positional scanning libraries (PSL) with N-terminal biotinylated 6-mer peptides have been constructed and screened for binding to a monoclonal antibody for fibronectin that inhibits the bacterial fibronectin-binding. The consensus sequences derived from these experiments are expected to be structural mimetics of the local structure of fibronectin involved in the bacterial adhesion. Since individual synthetic 6-mer peptides did not show the desired action, discontinuous epitopes can be envisaged and therefore a 9-mer-PSL was constructed to reveal conformational epitopes. In the second library, several 9-mer peptides based on the screening were synthesized and gave improved results.Australian Peptide Conference Issue  相似文献   

3.
Formyl peptide receptors (FPRs) are G-protein-coupled receptors that function as chemoattractant receptors in innate immune responses. Here we perform systematic structure-function analyses of FPRs from six mammalian species using structurally diverse FPR peptide agonists and identify a common set of conserved agonist properties with typical features of pathogen-associated molecular patterns. Guided by these results, we discover that bacterial signal peptides, normally used to translocate proteins across cytoplasmic membranes, are a vast family of natural FPR agonists. N-terminally formylated signal peptide fragments with variable sequence and length activate human and mouse FPR1 and FPR2 at low nanomolar concentrations, thus establishing FPR1 and FPR2 as sensitive and broad signal peptide receptors. The vomeronasal receptor mFpr-rs1 and its sequence orthologue hFPR3 also react to signal peptides but are much more narrowly tuned in signal peptide recognition. Furthermore, all signal peptides examined here function as potent activators of the innate immune system. They elicit robust, FPR-dependent calcium mobilization in human and mouse leukocytes and trigger a range of classical innate defense mechanisms, such as the production of reactive oxygen species, metalloprotease release, and chemotaxis. Thus, bacterial signal peptides constitute a novel class of immune activators that are likely to contribute to mammalian immune defense against bacteria. This evolutionarily conserved detection mechanism combines structural promiscuity with high specificity and enables discrimination between bacterial and eukaryotic signal sequences. With at least 175,542 predicted sequences, bacterial signal peptides represent the largest and structurally most heterogeneous class of G-protein-coupled receptor agonists currently known for the innate immune system.  相似文献   

4.
The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-β-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-β-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.Streptococcus pneumoniae asymptomatically colonizes the nasopharynx of 10–40% of people, but given the appropriate opportunity, it can become an extremely aggressive pathogen (13). This bacterium causes millions of deaths annually (1), is acquiring antibiotic resistance (4), and shows a disturbing and lethal synergy with the Influenza virus (5). The ability of S. pneumoniae to cause invasive disease is increasingly being linked with the capacity of this bacterium to attack and process the glycans present in host tissues (see Ref. 6 for a review). Indeed, large scale screening of pneumococcal virulence factors has revealed a large complement of genes devoted to complex carbohydrate metabolism that contribute to pneumococcal virulence (79). Recent elegant studies have focused on showing how a group of three exo-glycosidases sequentially trim complex human N-glycans (10, 11). These enzymes, however, only make up a fraction of the 39 glycosidases predicted to be in the pneumococcal genome (TIGR4 strain); at least 18 of these 39 are required for full virulence of the bacterium (7). Despite the growing appreciation for the role of carbohydrate metabolism in pneumococcal virulence and the possibility of targeting such metabolic pathways with small molecule therapeutic compounds, the bulk of the carbohydrate-active proteins of S. pneumoniae remain unexamined. As such, we presently have a relatively superficial but growing appreciation for the array of host glycans that S. pneumoniae can degrade.Several S. pneumoniae genes whose protein products are dedicated to the harvesting and processing of the sugar fucose are beginning to emerge as an important set of pneumococcal virulence factors (12). Comparative genomic studies of several S. pneumoniae genomes has suggested genetic variability at this locus; however, some components of the operon were observed to be present in all of the studied isolates (13). Through our recent identification and characterization of a novel solute-binding protein present in an alternate pneumococcal fucose utilization operon, we have made the observation that there are two different fucose utilization operons distributed among pneumococcal strains (14). Although the organization and composition of the two operons is different, both pathways are predicted to be initiated by the action of a family 98 glycoside hydrolase that is probably secreted (for a discussion of the sequence classification system of glycoside hydrolases, see Ref. 15). This GH98 is the same as that identified as a virulence factor in the TIGR4 strain (7). Remarkably, the GH98 enzymes from the two different pathways display different modular architectures, and their shared catalytic modules only have modest amino acid sequence identity. Given the placement of these enzymes in a fucose utilization operon, we hypothesized that they have activity on fucose-containing glycans; however, their divergent sequences and different modular arrangements led us to postulate that they would have different glycan substrate specificities.Here we describe the specificity and catalytic mechanism for these two different types of S. pneumoniae GH98 enzymes, one from the TIGR4 strain (Sp4GH98) and the other from the SP3-BS71 strain (Sp3GH98). Both enzymes act as endo-β-1,4-galactosidases on the galactosyl-β-1,4-N-acetylglucosamine linkage found in type 2 carbohydrate blood group antigens, although Sp4GH98 displays specificity for the LewisY antigen, whereas Sp3GH98 is highly selective for the same linkage in the blood group A/B-antigens. The biochemical analysis of these enzymes in combination with the determination of their structures in complex with products and substrates provides molecular level insight to their catalytic mechanism and how they discriminate between their respective substrates. We discuss these results in the context of the recent association of the pneumococcal fucose utilization operon with the virulence of S. pneumoniae (7, 12) and the possible strain-specific dependence of pneumococcal virulence on the carbohydrate antigens presented by different hosts.  相似文献   

5.
The possibility of obtaining low-molecular-weight heparins using a chitinolytic enzymatic complex immobilized on Silochrom has been demonstrated. The optimal conditions of this process (sodium acetate buffer, pH 7.0–7.5; temperature, 40–45°C; and duration of hydrolysis, 3 h) were determined. Depending on the ratio between heparin and the immobilized enzymatic complex, samples with molecular weights varying from 1.7 to 4.7 kDa, were obtained. These complexes inhibited factor Xa 2.0–3.7 times more effectively than the original heparin.  相似文献   

6.
Peptide-based packaging systems show great potential as safer drug delivery systems. They overcome problems associated with lipid-based or viral delivery systems, vis-a-vis stability, specificity, inflammation, antigenicity, and tune-ability. Here, we describe a set of 15 & 23-residue branched, amphiphilic peptides that mimic phosphoglycerides in molecular architecture. These peptides undergo supramolecular self-assembly and form solvent-filled, bilayer delimited spheres with 50–200 nm diameters as confirmed by TEM, STEM and DLS. Whereas weak hydrophobic forces drive and sustain lipid bilayer assemblies, these all-peptide structures are stabilized potentially by both hydrophobic interactions and hydrogen bonds and remain intact at low micromolar concentrations and higher temperatures. A linear peptide lacking the branch point showed no self-assembly properties. We have observed that these peptide vesicles can trap fluorescent dye molecules within their interior and are taken up by N/N 1003A rabbit lens epithelial cells grown in culture. These assemblies are thus potential drug delivery systems that can overcome some of the key limitations of the current packaging systems.  相似文献   

7.
Nine fatty acid–peptide hybrid molecules were constructed using the general formula CH3(CH2) n CO-Phe Asp Cys-amide and tested for their ability to inhibit cell lysis induced by the membrane-active peptide melittin. All of these molecules, where n = 4–14, inhibited the action of melittin to some extent, but the longer carbon chains were most effective. Several potential inhibitors were also constructed with conservative substitutions in the peptide portion of the molecule. All were effective to varying degrees. We concluded that in the hexapeptide inhibitor published by Blondelle et al. (1993), the role of the first three residues is only to provide hydrophobic interaction with the melittin and has no particular amino acid sequence specificity. Some of these inhibitors were found to inhibit the lytic activity of a melittin analogue which had only superficial sequence similarity to melittin and also a truncated form of melittin, indicating the generality of the action of the inhibitors.Deceased 5/4/98  相似文献   

8.
A branched peptide Nα, Nɛ-di (l-leucyl)-l-lysine was found to efficiently cleave supercoiled double-strand DNA such as PUC19 DNA at optimum pH 4.0 in 40 mmol/l Britton–Robbinson buffer. The T4 ligase experiment implied that the DNA cleavage occurs via a hydrolytic path. The dependence of the cleavage reaction on the ionic strength indicated that the interaction of DNA with the branched peptide involve only electrostatic binding.  相似文献   

9.
The newly identified lipases of 67 bacterial strains, primarily Bacillus and Pseudomonas, from the ARS Culture Collection have been characterized on the basis of their positional specificity for triglycerides (triolein). Lipase was produced by growing the cultures in tryptone–glucose–yeast extract medium for 24 h at 30°C before addition of triglyceride. The lipase was allowed to act on the triglyceride for 3 days before analysis by thin-layer chromatography. Of the bacterial lipases tested, 55 displayed random specificity, 9 were 1,3-specific, and 3 showed no apparent lipase activity under these conditions. Received: 25 July 2001 / Accepted: 27 August 2001  相似文献   

10.
A novel method for rapid screening of antimicrobial peptides (AMPs) was developed by using immobilized lipid affinity capture (ILAC) coupled with LC-MS. Phospholipid (PL) mixture containing phosphatidyl glycerol (PG): phosphatidyl ethanolamine (PE) (4:1), roughly mimic the PL composition of Gram-positive bacterial membrane, was covalently immobilized on magnetic particles (MPs). PL monolayer immobilized on MPs was used as a matrix for capturing of the membrane-disruptive AMPs. Hominicin, a new AMP against Gram-positive bacteria, was successfully captured by ILAC from the peptide pool of Staphylococcus hominis MBBL 2–9. The hominicin was identified by the comparative analysis of LC-MS 2Dprofiles of peptides captured by bare and PL-immobilized MPs. This is the first report for the development of rapid AMP screening method using lipid-immobilized MPs and LC-MS which will be a promising tool for discovery of various kinds of AMPs.  相似文献   

11.
Hydraulic Permeability of Immobilized Bacterial Cell Aggregates   总被引:1,自引:1,他引:0       下载免费PDF全文
A dense aggregate of cells was retained in a reactor by a supported porous membrane. A continuous flow of nutrient medium was maintained through the cell aggregate and membrane. The hydraulic resistance of the cell aggregate was monitored throughout experiments with either growing or chemically cross-linked cells, under conditions of varying flow rates. Digital image analysis was used to characterize the sizes, separations, and orientations of several thousand individual cells in electron micrographs of chemically cross-linked cell aggregates. Two nonlinear phenomena were observed. First, the hydraulic resistance varied in direct relation to and reversibly with flow rate. Second, in constant flow-rate experiments the hydraulic resistance increased with time at a faster rate than could be attributed to cell growth. Both of these phenomena were dependent upon and could be explained by the ability of cells to move with respect to one another, under the influences of Brownian motion and of convection. Such relative motion could allow changes in net alignment of cells in the direction of flow and in the volume fraction of cells in the aggregate. This explanation is consistent with image analysis data. The observed sensitivity of hydraulic resistance to flow rate was inconsistent with a model that assumed elastic deformation of individual cells, and no evidence of cell deformation was found in electron micrographs.  相似文献   

12.
Protoplasts from 8- to 9-day-old wheat (Triticum aestivum L.) leaves were used to isolate organelles which were examined for their contents of peptide hydrolase enzymes and, in the case of vacuoles, other acid hydrolases. High yields of intact chloroplasts were obtained using both equilibrium density gradient centrifugation and velocity sedimentation centrifugation on sucrose-sorbitol gradients. Aminopeptidase activity was found to be distributed, in approximately equal proportions, between the chloroplasts and cytoplasm. Leucyltyrosine dipeptidase was mainly found in the cytoplasm, although about 27% was associated with the chloroplasts. Vacuoles shown to be free from Cellulysin contamination contained all of the protoplast carboxypeptidase and hemoglobin-degrading activities. The acid hydrolases, phosphodiesterase, acid phosphatase, α-mannosidase, and β-N-acetylglucosamidase were found in the vacuole to varying degrees, but no β-glucosidase was localized in the vacuole.  相似文献   

13.
The global need to improve bacterial detection in liquid media has motivated multidisciplinary research efforts toward developing new approaches that overcome the shortcomings of traditional techniques. We recently proposed the use of oligomers of acylated lysyls (OAKs) in their resin-linked form (ROAKs) for the efficient, robust, and inexpensive filtration of bacteria. Here, to investigate the potential for the use of ROAKs in downstream applications, we first examined the capacity of ROAKs to capture bacteria as a function of environmental conditions and structure-activity relationships (SARs). We next assessed their ability to release the captured bacteria and then combined both abilities to improve real-time PCR outcomes. ROAKs were able to deplete liquid samples of bacterial content after incubation or continuous flow, illustrating the efficient capture of different bacterial species under a wide range of ionic strength and pH conditions. We also show circumstances for the significant release of captured bacteria, live or dead, for further analysis. Finally, the SAR study revealed a shorter ROAK derivative exhibiting a capture capacity similar to that of the parent construct but the increased recovery of ROAK-bound bacteria, enabling improvement of the detection sensitivity by 20-fold. Collectively, the data support the potential usefulness of a simple, robust, and efficient approach for rapid capture/analysis of bacteria from tap water and, possibly, from more complex media.  相似文献   

14.
The semicontinuous and continuous production of pharmaceutically useful ergot peptides with immobilized Claviceps purpurea could be demonstrated. A key aspect was the presence of high concentrations of CaCl2 (96.9 mM) to give marked prolongation of the productive phase, and cultivation in a bubble column reactor became possible. Restriction of the phosphate supply avoided an otherwise problematic massive increase of outgrowing hyphae.  相似文献   

15.
16.
Feller  Urs 《Plant & cell physiology》1981,22(6):1095-1104
Endopeptidase activity against azocasein had a higher temperatureoptimum (50°C) in leaf extracts than in cotyledon extracts(37°C). The temperature optima for aminopeptidase (46°C)and for carboxypeptidase (53°C) were similar in leaf andcotyledon extracts. The endopeptidase activity showed an excellentstability in crude extracts from leaves even at 37°C, whilethe endopeptidase in cotyledon extracts was less stable. Carboxypeptidasewas very stable in both leaf and cotyledon extracts. Aminopeptidasewas the least stable of the enzymes investigated and its inactivationrate depended on the source of the extract. A moderate stabilitywas observed in extracts of leaves or of ungerminated seeds,but this enzyme was rapidly inactivated in cotyledon extractsat pH 5.4. At pH 7.5 aminopeptidase remained active longer thanat pH 5.4. From experiments with mixed extracts it could beconcluded that in cotyledons an aminopeptidase inactivatingfactor was formed during germination. This factor was heat sensitive,excluded by Sephadex G-25, precipitated by 75% ammonium sulfateand inhibited by tosyl-L-lysine chloromethyl ketone. These datasuggest that the factor is a protein and considering the similarproperties it appears possible that it is the endopeptidaseformed during germination. (Received May 15, 1981; Accepted July 18, 1981)  相似文献   

17.
Peptide libraries or antigenic determinants can be displayed on the surface of bacteria through insertion in a suitable outer membrane scaffold protein. Here, we inserted the well-known antibody epitopes 3xFLAG and 2xmyc in exterior loops of the transmembrane (TM) domain of OmpA. Although these highly charged epitopes were successfully displayed on the cell surface, their levels were 10-fold reduced due to degradation. We verified that the degradation was not caused by the absence of the C-terminal domain of OmpA. In contrast, a peptide that was only moderately charged (SA-1) appeared to be stably incorporated in the outer membrane at normal protein levels. Together, these results suggest that the display efficiency is sensitive to the charge of the inserted epitopes. In addition, the high-level expression of OmpA variants with surface-displayed epitopes adversely affected growth in a strain dependent, transient manner. In a MC4100 derived strain growth was affected, whereas in MC1061 derived strains growth was unaffected. Finally, results obtained using a gel-shift assay to monitor β-barrel folding in vivo show that the insertion of small epitopes can change the heat modifiability of the OmpA TM domain from ‘aberrant’ to normal, and predict that some β-barrels will not display any significant heat-modifiability at all.  相似文献   

18.
19.
20.
一种用于穿透多肽筛选的随机文库的构建及筛选   总被引:1,自引:0,他引:1  
以增强型绿色荧光蛋白(enhanced green fluorescence protein, EGFP)为示踪物,在pET-14b载体上构建编码12个氨基酸的随机多肽表达文库.建立一种简便、经济、有效的文库筛选方法,从所构建的文库中筛选出细胞穿透多肽(cell-penetrating peptide, CPP). 采用点突变技术,首先在pET-14b载体多克隆位点NdeⅠ和XhoⅠ之间加入4个限制性内切酶位点,随后在BamH Ⅰ位点后加入三联终止密码子,接着再利用亚克隆的方法在Kpn Ⅰ 和XhoⅠ之间插入EGFP,形成一个新的用于原核表达示踪蛋白的载体pET-14bMCStop/EGFP.最后再利用点突变技术在上述构建的示踪载体的多克隆位点XhoⅠ和BamH Ⅰ之间插入36个随机碱基序列.以His-Tat-EGFP作为工具建立有效的筛选方法,利用这种方法对文库进行筛选. 酶切和测序表明,示踪载体的构建是正确的,且在大肠杆菌中可有效地表达出His标记的EGFP.在示踪载体的基础上构建的随机多肽文库至少包含了105个独立克隆,其中90%以上的克隆插入的随机片段都是36个碱基.建立的筛选方法是可行的,并用此方法进行了初步的筛选.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号