共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase D prevents apoptosis in v-Src-transformed rat fibroblasts and MDA-MB-231 breast cancer cells 总被引:3,自引:0,他引:3
Zhong M Shen Y Zheng Y Joseph T Jackson D Foster DA 《Biochemical and biophysical research communications》2003,302(3):615-619
Phospholipase D (PLD) activity is elevated in response to mitogenic and oncogenic signals. PLD also cooperates with overexpressed tyrosine kinases to transform rat fibroblasts. 3Y1 rat fibroblasts overexpressing the tyrosine kinase c-Src undergo apoptosis in response to serum withdrawal. We report here that elevated expression of either PLD1 or PLD2 in these cells prevents apoptosis induced by serum withdrawal. 3Y1 cells transformed by the activated tyrosine kinase v-Src have elevated PLD activity and are resistant to apoptosis induced by serum withdrawal. However, if PLD activity is blocked, the v-Src-transformed cells underwent apoptosis. MDA-MB-231 cells are a human breast cancer cell line with substantially elevated levels of PLD activity. Inhibiting PLD activity in these cells similarly rendered them sensitive to the apoptotic insult of serum withdrawal. These data indicate that elevated PLD activity generates a survival signal(s) allowing cells to overcome default apoptosis programs. 相似文献
2.
Phospholipase D (PLD) has emerged as a regulator of several critical aspects of cell physiology. PLD, which catalyzes the hydrolysis of phosphatidylcholine (PC) to phosphatidic acid (PA) and choline, is activated in response to stimulators of vesicle transport, endocytosis, exocytosis, cell migration, and mitosis. Dysregulation of these cell biological processes occurs in the development of a variety of human tumors. It has now been observed that there are abnormalities in PLD expression and activity in many human cancers. In this review, evidence is summarized implicating PLD as a critical regulator of cell proliferation, survival signaling, cell transformation, and tumor progression. 相似文献
3.
Stephen P. Halenda Hung Wu Allan W. Jones Shivendra D. Shukla 《Chemistry and physics of lipids》1996,80(1-2)
Phospholipase D (PLD) is stimulated in platelets by various agents. Phosphatidylcholine is the major substrate for PLD. This enzymatic pathway generates phosphatidic acid selectively. Guanine nucleotides also stimulate PLD in platelet membranes. Furthermore, tyrosine kinase may also be involved in platelet PLD regulation. It appears that multiple signals acting sequentially or in parallel converge on PLD. Among others, PLD has been proposed to play a role in platelet secretion and PLA2 regulation. PLD is also present in platelet percursor megakaryoctric cells and can be activated by platelet agonists. In these cells both PKC and G-proteins (e.g. Rho) may regulate PLD activity. The significance of PLD in megakaryocytes awaits investigation. These recent developments offer new avenues of research to further elucidate the biochemistry of platelet and megakaryocyte function. 相似文献
4.
Phospholipase D2 activity suppresses hydrogen peroxide-induced apoptosis in PC12 cells 总被引:4,自引:0,他引:4
Phospholipase D (PLD) plays an important role as an effector in the membrane lipid-mediated signal transduction. However, the precise physiological functions of PLD are not yet well understood. In this study, we examined the role of PLD activity in hydrogen peroxide (H(2)O(2))-induced apoptosis in rat pheochromocytoma (PC12) cells. Treatment of PC12 cells with H(2)O(2) resulted in induction of apoptosis in these cells, which is accompanied by the activation of PLD. This H(2)O(2)-induced apoptosis was enhanced remarkably when phosphatidic acid production by PLD was selectively inhibited by pretreating the PC12 cells with 1-butanol. Expression of PLD2, but not of PLD1, correlated with increased H(2)O(2)-induced PLD activity in a concentration- and time-dependent manner. Concomitant with PLD activation, the PLD2 activity suppressed H(2)O(2)-induced apoptosis in PC12 cells. Expression of PLD2 lipase-inactive mutant (K758R) had no effect on either PLD activity or apoptosis. PLD2 activity also suppressed H(2)O(2)-induced cleavage and activation of caspase-3. Taken together, the results suggest that PLD2 activity is specifically up-regulated by H(2)O(2) in PC12 cells and that it plays a suppressive role in H(2)O(2)-induced apoptosis. 相似文献
5.
Kim SY Ahn BH Min KJ Lee YH Joe EH Min DS 《The Journal of biological chemistry》2004,279(37):38125-38133
Little is known about the effect of epigallocatechin-3 gallate (EGCG), a major constituent of green tea, on the expression of cyclooxygenase (COX)-2. Here, we studied the role of phospholipase D (PLD) isozymes in EGCG-induced COX-2 expression. Stimulation of human astrocytoma cells (U87) with EGCG induced formation of phosphatidylbutanol, a specific product of PLD activity, and synthesis of COX-2 protein and its product, prostaglandin E(2) (PGE(2)). Pretreatment of cells with 1-butanol, but not 3-butanol, suppressed EGCG-induced COX-2 expression and PGE synthesis. Furthermore, evidence that PLD was involved in EGCG-induced COX-2 expression was provided by the observations that COX-2 expression was stimulated by overexpression of PLD1 or PLD2 isozymes and treatment with phosphatidic acid (PA), and that prevention of PA dephosphorylation by 1-propranolol significantly potentiated COX-2 expression induced by EGCG. EGCG induced activation of p38 mitogen-activated protein kinase (p38 MAPK), and specific inhibition of p38 MAPK dramatically abolished EGCG-induced PLD activation, COX-2 expression, and PGE(2) formation. Moreover, protein kinase C (PKC) inhibition suppressed EGCG-induced p38 MAPK activation, COX-2 expression, and PGE(2) accumulation. The same pathways as those obtained (2)in the astrocytoma cells were active in primary rat astrocytes, suggesting the relevance of the findings. Collectively, our results demonstrate for the first time that PLD isozymes mediate EGCG-induced COX-2 expression through PKC and p38 in immortalized astroglial line and normal astrocyte cells. 相似文献
6.
Studies on prostaglandin (PG) regulation of bone formation and resorption metabolism have been complicated by the heterogeneity of the tissue, which involves the interaction between and the activities of two bone cell types, osteoblasts and osteoclasts. In a simplified assay system using a cultured human osteoblastic cell line which has the capacity to form calcified tissue, we determined the effects of PGs on calcification. Of the PGs tested, PGD2 has a remarkable stimulatory activity on osteoblast calcification, but that the effective form is probably a metabolite, delta 12-PGJ2. This calcification function is not cAMP-mediated. PGD2 acts directly on osteoblast to cause stimulation of calcification. 相似文献
7.
2D protrusion but not motility predicts growth factor-induced cancer cell migration in 3D collagen 总被引:1,自引:0,他引:1
Meyer AS Hughes-Alford SK Kay JE Castillo A Wells A Gertler FB Lauffenburger DA 《The Journal of cell biology》2012,197(6):721-729
Growth factor-induced migration is a critical step in the dissemination and metastasis of solid tumors. Although differences in properties characterizing cell migration on two-dimensional (2D) substrata versus within three-dimensional (3D) matrices have been noted for particular growth factor stimuli, the 2D approach remains in more common use as an efficient surrogate, especially for high-throughput experiments. We therefore were motivated to investigate which migration properties measured in various 2D assays might be reflective of 3D migratory behavioral responses. We used human triple-negative breast cancer lines stimulated by a panel of receptor tyrosine kinase ligands relevant to mammary carcinoma progression. Whereas 2D migration properties did not correlate well with 3D behavior across multiple growth factors, we found that increased membrane protrusion elicited by growth factor stimulation did relate robustly to enhanced 3D migration properties of the MDA-MB-231 and MDA-MB-157 lines. Interestingly, we observed this to be a more reliable relationship than cognate receptor expression or activation levels across these and two additional mammary tumor lines. 相似文献
8.
9.
The bridging of IgE receptors on rat basophilic leukemia cells (RBL-2H3) results in a number of biochemical events that accompany histamine secretion. Prominent among these is the release of arachidonic acid from cellular phospholipids, which could be due to the activation of phospholipase enzymes. In the present experiments we studied the intracellular activation of phospholipase A2 (PLA2) during histamine release. RBL-2H3 cells were stimulated through the IgE receptor, and the homogenates were prepared and tested for phospholipase A2 activity on 1-stearoyl-2-[14C]arachidonyl-sn-3-phosphatidylcholine. The amount of activity in the homogenates was dependent on the concentration of secretagogue used to activate the cells. Under optimal conditions there was a 1.86 +/- 0.12-fold (mean +/- SEM, N = 44) increase in the activity found in homogenates of stimulated cells. Activity was present in homogenates prepared 30 sec after cell activation, was optimal between 5 and 10 min, and decreased later. In time course experiments the PLA2 activation preceded histamine release. The activation of the enzyme in the cell occurred in the presence of 10 microM EGTA in the extracellular medium, which completely inhibited release of arachidonic acid and histamine. However, the activity of the enzyme required Ca2+. The PLA2 activity in the homogenates and the extent of cell stimulation for histamine release were maximal at the same concentration of antigen, and both were blocked by the addition of a monovalent hapten. The enzyme in the homogenates was capable of cleaving arachidonic acid from different phospholipids. The production of lysophospholipids could play a critical role in histamine release from cells. These results demonstrate the activation of PLA2 enzyme in cellular homogenates during the secretory process. 相似文献
10.
11.
Phospholipase D catalyses the hydrolysis of phosphatidylcholine to generate phosphatidate. The regulation of PLD activity is complex involving a number of small GTP binding proteins, but in particular Arf and Rho, phosphatidylinositol 4,5-bisphosphate and protein kinase C. The cDNA for PLD1 has recently been cloned and shows homology to the yeast and plant genes but only within four domains. Domains I and IV each contain a putative catalytic triad. PLD activity has been detected in plasma membranes, Golgi membranes and in nuclear membranes; it is unclear if different isoenzymes are responsible for this variation, or if the PLDs are differently regulated. The product of PLD activity, PA, appears to be a messenger molecule regulating the actin cytoskeleton and maybe playing a role in the control of membrane traffic and secretion. 相似文献
12.
Wang L Rodrigues NA Wu Y Maslikowski BM Singh N Lacroix S Bédard PA 《Journal of virology》2011,85(13):6725-6735
The activation of AP-1 is a hallmark of cell transformation by tyrosine kinases. In this study, we characterize the role of AP-1 proteins in the transformation of chicken embryo fibroblasts (CEF) by v-Src. In normal CEF, the expression of a dominant negative mutant of c-Jun (TAM67) induced senescence. In contrast, three distinct phenotypes were observed when TAM67 was expressed in v-Src-transformed CEF. While senescent cells were also present, the inhibition of AP-1 caused apoptosis in a fraction of the v-Src-transformed cells. In addition, cells containing lipid-rich vesicles accumulated, suggesting that a subpopulation of the v-Src-transformed cells underwent differentiation in response to the inhibition of AP-1. JunD and Fra-2 were the main components of this factor, while c-Jun accounted for a minor fraction of AP-1 in v-Src-transformed CEF. The downregulation of c-Jun expression by short hairpin RNA (shRNA) induced senescence in normal and v-Src-transformed cells. In contrast, a high incidence of apoptosis was caused by the downregulation of JunD, suggesting that it is required for the survival of v-Src-transformed CEF. Levels of the p53 tumor suppressor were elevated under conditions of JunD inhibition. Repression of p53 by shRNA enhanced the survival and anchorage-independent proliferation of v-Src-transformed CEF with JunD/AP-1 inhibition. The inhibition of Fra-2 had no visible phenotype in normal CEF but caused the appearance of lipid-rich vesicles in v-Src-transformed CEF. Therefore, AP-1 facilitated transformation by acting as a survival factor, by inhibiting premature entry into senescence, and by blocking the differentiation of v-Src-transformed CEF. 相似文献
13.
14.
Marchini-Alves CM Nicoletti LM Mazucato VM de Souza LB Hitomi T Alves Cde P Jamur MC Oliver C 《The journal of histochemistry and cytochemistry》2012,60(5):386-396
The current study examined the role of PLD2 in the maintenance of mast cell structure. Phospholipase D (PLD) catalyzes hydrolysis of phosphatidylcholine to produce choline and phosphatidic acid (PA). PLD has two isoforms, PLD1 and PLD2, which vary in expression and localization depending on the cell type. The mast cell line RBL-2H3 was transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2. The results of this study show that PLD2CI cells have a distinct star-shaped morphology, whereas PLD2CA and RBL-2H3 cells are spindle shaped. In PLD2CI cells, the Golgi complex was also disorganized with dilated cisternae, and more Golgi-associated vesicles were present as compared with the PLD2CA and RBL-2H3 cells. Treatment with exogenous PA led to the restoration of the wild-type Golgi complex phenotype in PLD2CI cells. Conversely, treatment of RBL-2H3 and PLD2CA cells with 1% 1-Butanol led to a disruption of the Golgi complex. The distribution of acidic compartments, including secretory granules and lysosomes, was also modified in PLD2CI cells, where they concentrated in the perinuclear region. These results suggest that the PA produced by PLD2 plays an important role in regulating cell morphology in mast cells. 相似文献
15.
Marie-France Bader Nicolas Vitale 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(9):936-941
Membrane fusion remains one of the less well-understood processes in cell biology. A variety of mechanisms have been proposed to explain how the generation of fusogenic lipids at sites of exocytosis facilitates secretion in mammalian cells. Over the last decade, chromaffin cells have served as an important cellular model to demonstrate a key role for phospholipase D1 (PLD1) generated phosphatidic acid in regulated exocytosis. The current model proposes that phosphatidic acid plays a biophysical role, generating a negative curvature and thus promoting fusion of secretory vesicles with the plasma membrane. Moreover, multiple signaling pathways converging on PLD1 regulation have been unraveled in chromaffin cells, suggesting a complex level of regulation dependant on the physiological context. 相似文献
16.
Mark McDermott Michael J O Wakelam Andrew J Morris 《Biochimie et biologie cellulaire》2004,82(1):225-253
Phospholipase D catalyses the hydrolysis of the phosphodiester bond of glycerophospholipids to generate phosphatidic acid and a free headgroup. Phospholipase D activities have been detected in simple to complex organisms from viruses and bacteria to yeast, plants, and mammals. Although enzymes with broader selectivity are found in some of the lower organisms, the plant, yeast, and mammalian enzymes are selective for phosphatidylcholine. The two mammalian phospholipase D isoforms are regulated by protein kinases and GTP binding proteins of the ADP-ribosylation and Rho families. Mammalian and yeast phospholipases D are also potently stimulated by phosphatidylinositol 4,5-bisphosphate. This review discusses the identification, characterization, structure, and regulation of phospholipase D. Genetic and pharmacological approaches implicate phospholipase D in a diverse range of cellular processes that include receptor signaling, control of intracellular membrane transport, and reorganization of the actin cytoskeleton. Most ideas about phospholipase D function consider that the phosphatidic acid product is an intracellular lipid messenger. Candidate targets for phospholipase-D-generated phosphatidic acid include phosphatidylinositol 4-phosphate 5-kinases and the raf protein kinase. Phosphatidic acid can also be converted to two other lipid mediators, diacylglycerol and lyso phosphatidic acid. Coordinated activation of these phospholipase-D-dependent pathways likely accounts for the pleitropic roles for these enzymes in many aspects of cell regulation. 相似文献
17.
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid, a molecule known to have multiple physiological roles, including release of nascent secretory vesicles from the trans-Golgi network. In mammalian cells two forms of the enzyme, PLD1 and PLD2, have been described. We recently demonstrated that PLD1 is localized to the Golgi apparatus, nuclei, and to a lesser extent, plasma membrane. Due to its low abundance, the intracellular localization of PLD2 has been characterized only indirectly through overexpression of chimeric proteins. Using antibodies specific to PLD2, together with immunofluorescence microscopy, herein we demonstrate that a significant fraction of endogenous PLD2 localized to the perinuclear Golgi region and was also distributed throughout cells in dense cytoplasmic puncta; a fraction of which colocalized with caveolin-1 and the plasma membrane. On treatment with brefeldin A, PLD2 translocated into the nucleus in a manner similar to PLD1, suggesting a potential role in nuclear signaling. Most significantly, cryoimmunogold electron microscopy demonstrated that in pituitary GH(3) cells >90% of PLD2 present in the Golgi apparatus was localized to cisternal rims and peri-Golgi vesicles exclusively. The data are consistent with a model whereby PLD2 plays a role in Golgi vesicular transport. 相似文献
18.
Hideki Fukuda Yuji Turugida Takahiro Nakajima Eiji Nomura Akihiko Kondo 《Biotechnology letters》1996,18(8):951-956
Summary Production of phospholipase D (PLD) by Streptoverticillium cinnamoneum immobilized within porous particles was investigated in repeated batch fermentation. The enzyme productivity in repeated batch fermentation was 2.2-fold that obtained in batch fermentation without immobilization, since many of the immobilized cells could be utilized as seed cells for each subsequent batch cycle. 相似文献
19.
Tumor necrosis factor alpha (TNFalpha), a pleiotropic cytokine, activates both apoptotic and pro-survival signals depending on the cell model. Using ECV304 cells, which can be made TNFalpha-sensitive by cycloheximide (CHX) co-treatment, we evaluated the potential roles of ceramide and phospholipase D (PLD) in TNFalpha-induced apoptosis. TNFalpha/CHX induced a robust increase in ceramide levels after 16 h of treatment when cell death was maximal. PLD activity was increased at early time point (1h) whereas both PLD activity and PLD1 protein were strongly decreased after 24h. TNFalpha/CHX-induced cell death was significantly lowered by exogenous bacterial PLD and phoshatidic acid, and in cells overexpressing PLD1. Conversely, cells depleted in PLD proteins by small interference RNA (siRNA) treatment exhibited higher susceptibility to apoptosis. These results show that PLD exerts a protective role against TNFalpha-induced cell death. 相似文献
20.
Phospholipases C and D are phosphodiesterases which act on phospholipid head groups. Although the presence of these enzymes in living organisms has long been known, it is only recently that their role in cell signal transduction has been appreciated. The new developments on phospholipases D (PLD) are especially noteworthy, since these enzymes catalyze a novel pathway for second messenger generation. In a variety of mammalian cell systems, several biological or chemical agents have recently been shown to stimulate PLD activity. Depending on the system, activation of PLD has been suggested to be either dependent on, or independent of, Ca2+ and protein kinase C. PLD primarily hydrolyses phosphatidylcholine (PC) but phosphatidylinositol and phosphatidylethanolamine have also been reported as substrates. Different forms of endogenous PLD may also exist in cells. Exogenous addition of PLD causes alterations in cellular functions. In many instances, Ca2+ mobilizing agonists may stimulate both PLC and PLD pathways. Interestingly, several metabolites of these two enzymes are second messengers and are common to both pathways (e.g. phosphatidic acid, diglyceride). This has raised the issue of the interrelationship between these pathways. The regulation of either PLC or PLD by cellular components, e.g. guanine nucleotide binding proteins or protein kinases, is under intense investigation. These recent advances are providing novel information on the significance of phospholipase C and D mediated phospholipid turnover in cellular signalling. This review highlights some of these new discoveries and emerging issues, as well as challenges for future research on phospholipases. 相似文献