首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signaling at the plasma membrane is modulated by up- and downregulation of signaling proteins. A prominent example for this type of regulation is the Drosophila TRPL ion channel that changes its spatial distribution within the photoreceptor cell. In dark-raised flies TRPL is localized in the rhabdomeral photoreceptor membrane and it translocates to the cell body upon illumination. It has been shown that TRPL translocation depends on the activation of the phototransduction cascade and requires the presence of functional rhodopsin as well as Ca2+-influx through a second lightactivated ion channel, TRP. However, little is known about the cell biological mechanism underlying TRPL translocation. Here we describe a FRT/FLP screen designed to isolate mutants defective in TRPL internalization based on the localization of eGFP-tagged TRPL in the eyes of living flies. We mutated chromosome arms 2L, 2R and 3R and isolated 12 mutants that failed to internalize TRPL. We found that four mutants did not complement genes known to affect TRPL translocation, which are trp, ninaE and inaD. Two of the isolated mutants represent new alleles of trp and ninaE. The trp allele contains a premature stop codon after amino acid 884, whereas the ninaE allele has a mutation resulting in the substitution P193S. As determined biochemically no TRP or rhodopsin protein, respectively, was expressed in the eyes of these mutants. The absence of TRP or rhodopsin in the isolated mutants readily explains the defect in TRPL internalization and proves the feasibility of our genetic screen.  相似文献   

2.
Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP) and TRP-like (TRPL) and generates the visual response. The signaling proteins are located in a plasma membrane compartment called rhabdomere. The major rhodopsin (Rh1) and TRP are predominantly localized in the rhabdomere in light and darkness. In contrast, TRPL translocates between the rhabdomeral plasma membrane in the dark and a storage compartment in the cell body in the light, from where it can be recycled to the plasma membrane upon subsequent dark adaptation. Here, we identified the gene mutated in trpl translocation defective 14 (ttd14), which is required for both TRPL internalization from the rhabdomere in the light and recycling of TRPL back to the rhabdomere in the dark. TTD14 is highly conserved in invertebrates and binds GTP in vitro. The ttd14 mutation alters a conserved proline residue (P75L) in the GTP-binding domain and abolishes binding to GTP. This indicates that GTP binding is essential for TTD14 function. TTD14 is a cytosolic protein and binds to PtdIns(3)P, a lipid enriched in early endosome membranes, and to phosphatidic acid. In contrast to TRPL, rhabdomeral localization of the membrane proteins Rh1 and TRP is not affected in the ttd14 P75L mutant. The ttd14 P75L mutation results in Rh1-independent photoreceptor degeneration and larval lethality suggesting that other processes are also affected by the ttd14 P75L mutation. In conclusion, TTD14 is a novel regulator of TRPL trafficking, involved in internalization and subsequent sorting of TRPL into the recycling pathway that enables this ion channel to return to the plasma membrane.  相似文献   

3.
The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation.  相似文献   

4.
In Drosophila photoreceptors Ca(2+)-permeable channels TRP and TRPL are the targets of phototransduction, occurring in photosensitive microvilli and mediated by a phospholipase C (PLC) pathway. Using a novel Drosophila brain slice preparation, we studied the distribution and physiological properties of TRP and TRPL in the lamina of the visual system. Immunohistochemical images revealed considerable expression in photoreceptors axons at the lamina. Other phototransduction proteins are also present, mainly PLC and protein kinase C, while rhodopsin is absent. The voltage-dependent Ca(2+) channel cacophony is also present there. Measurements in the lamina with the Ca(2+) fluorescent protein G-CaMP ectopically expressed in photoreceptors, revealed depolarization-induced Ca(2+) increments mediated by cacophony. Additional Ca(2+) influx depends on TRP and TRPL, apparently functioning as store-operated channels. Single synaptic boutons resolved in the lamina by FM4-64 fluorescence revealed that vesicle exocytosis depends on cacophony, TRP and TRPL. In the PLC mutant norpA bouton labeling was also impaired, implicating an additional modulation by this enzyme. Internal Ca(2+) also contributes to exocytosis, since this process was reduced after Ca(2+)-store depletion. Therefore, several Ca(2+) pathways participate in photoreceptor neurotransmitter release: one is activated by depolarization and involves cacophony; this is complemented by internal Ca(2+) release and the activation of TRP and TRPL coupled to Ca(2+) depletion of internal reservoirs. PLC may regulate the last two processes. TRP and TRPL would participate in two different functions in distant cellular regions, where they are opened by different mechanisms. This work sheds new light on the mechanism of neurotransmitter release in tonic synapses of non-spiking neurons.  相似文献   

5.
In Drosophila photoreceptors the transient receptor potential-like (TRPL), but not the TRP channels undergo light-dependent translocation between the rhabdomere and cell body. Here we studied which of the TRPL channel segments are essential for translocation and why the TRP channels are required for inducing TRPL translocation. We generated transgenic flies expressing chimeric TRP and TRPL proteins that formed functional light-activated channels. Translocation was induced only in chimera containing both the N- and C-terminal segments of TRPL. Using an inactive trp mutation and overexpressing the Na(+)/Ca(2+) exchanger revealed that the essential function of the TRP channels in TRPL translocation is to enhance Ca(2+)-influx. These results indicate that motifs present at both the N and C termini as well as sustained Ca(2+) entry are required for proper channel translocation.  相似文献   

6.
TRP channels have emerged as key biological sensors in vision, taste, olfaction, hearing, and touch. Despite their importance, virtually nothing is known about the folding and transport of TRP channels during biosynthesis. Here, we identify XPORT (exit protein of rhodopsin and TRP) as a critical chaperone for TRP and its G protein-coupled receptor (GPCR), rhodopsin (Rh1). XPORT is a resident ER and secretory pathway protein that interacts with TRP and Rh1, as well as with Hsp27 and Hsp90. XPORT promotes the targeting of TRP to the membrane in Drosophila S2 cells, a finding that provides a critical first step toward solving a longstanding problem in?the successful heterologous expression of TRP. Mutations in xport result in defective transport of TRP and Rh1, leading to retinal degeneration. Our results identify XPORT as a molecular chaperone and provide a mechanistic link between TRP channels and their GPCRs during biosynthesis and transport.  相似文献   

7.
Minke B  Agam K 《Cell calcium》2003,33(5-6):395-408
The Drosophila light-activated channel TRP is the founding member of a large and diverse family of channel proteins that is conserved throughout evolution. In spite of much progress, the gating mechanism of TRP channels is still unknown. However, recent studies have shown multi-faceted functions of the Drosophila light-sensitive TRP channel that may shed light on TRP gating. Accordingly, metabolic stress, which leads to depletion of cellular ATP, reversibly activates the Drosophila TRP and TRPL channels in the dark in a constitutive manner. In several Drosophila mutants, constitutive activity of TRP channels lead to a rapid retinal degeneration in the dark, while genetic elimination of TRP protects the cells from degeneration. Additional studies have shown that TRPL translocates in a light-dependent manner between the signaling membranes and the cell body. This light-activated translocation is accompanied by reversible morphological changes leading to partial and reversible collapse of the microvillar signaling membranes into the cytosol, which allows turnover of signaling molecules. These morphological changes are also blocked by genetic elimination of TRP channels. The link of TRP gating to the metabolic state and maintenance of cells makes cells expressing TRP extremely vulnerable to metabolic stress via a mechanism that may underlie retinal degeneration and neuronal cell death upon malfunction.  相似文献   

8.
Agam K  Frechter S  Minke B 《Cell calcium》2004,35(2):87-105
The Transient Receptor Potential (TRP) proteins constitute a large and diverse family of channel proteins, which is conserved through evolution. TRP channel proteins have critical functions in many tissues and cell types, but their gating mechanism is an enigma. In the present study patch-clamp whole-cell recordings was applied to measure the TRP- and TRP-like (TRPL)-dependent currents in isolated Drosophila ommatidia. Also, voltage responses to light and to metabolic stress were recorded from the eye in vivo. We report new insight into the gating of the Drosophila light-sensitive TRP and TRPL channels, by which both Ca2+ and protein dephosphorylation are required for channel activation. ATP depletion or inhibition of protein kinase C activated the TRP channels, while photo-release of caged ATP or application of phorbol ester antagonized channels openings in the dark. Furthermore, Mg(2+)-dependent stable phosphorylation event by ATPgammaS or protein phosphatase inhibition by calyculin A abolished activation of the TRP and TRPL channels. While a high reduction of cellular Ca2+ abolished channel activation, subsequent application of Ca2+ combined with ATP depletion induced a robust dark current that was reminiscent of light responses. The results suggest that the combined action of Ca2+ and protein dephosphorylation activate the TRP and TRPL channels, while protein phosphorylation by PKC antagonized channels openings.  相似文献   

9.
The light-activated channels of Drosophila photoreceptors transient receptor potential (TRP) and TRP-like (TRPL) show voltage-dependent conductance during illumination. Recent studies implied that mammalian members of the TRP family, which belong to the TRPV and TRPM subfamilies, are intrinsically voltage-gated channels. However, it is unclear whether the Drosophila TRPs, which belong to the TRPC subfamily, share the same voltage-dependent gating mechanism. Exploring the voltage dependence of Drosophila TRPL expressed in S2 cells, we found that the voltage dependence of this channel is not an intrinsic property since it became linear upon removal of divalent cations. We further found that Ca(2+) blocked TRPL in a voltage-dependent manner by an open channel block mechanism, which determines the frequency of channel openings and constitutes the sole parameter that underlies its voltage dependence. Whole cell recordings from a Drosophila mutant expressing only TRPL indicated that Ca(2+) block also accounts for the voltage dependence of the native TRPL channels. The open channel block by Ca(2+) that we characterized is a useful mechanism to improve the signal to noise ratio of the response to intense light when virtually all the large conductance TRPL channels are blocked and only the low conductance TRP channels with lower Ca(2+) affinity are active.  相似文献   

10.
The Drosophila light-activated channel TRP is the founding member of a large and diverse family of channel proteins that is conserved throughout evolution. In spite of much progress, the gating mechanism of TRP channels is still unknown. However, recent studies have shown multi-faceted functions of the Drosophila light-sensitive TRP channel that may shed light on TRP gating. Accordingly, metabolic stress, which leads to depletion of cellular ATP, reversibly activates the Drosophila TRP and TRPL channels in the dark in a constitutive manner. In several Drosophila mutants, constitutive activity of TRP channels lead to a rapid retinal degeneration in the dark, while genetic elimination of TRP protects the cells from degeneration. Additional studies have shown that TRPL translocates in a light-dependent manner between the signaling membranes and the cell body. This light-activated translocation is accompanied by reversible morphological changes leading to partial and reversible collapse of the microvillar signaling membranes into the cytosol, which allows turnover of signaling molecules. These morphological changes are also blocked by genetic elimination of TRP channels. The link of TRP gating to the metabolic state and maintenance of cells makes cells expressing TRP extremely vulnerable to metabolic stress via a mechanism that may underlie retinal degeneration and neuronal cell death upon malfunction.  相似文献   

11.
Illumination of Drosophila photoreceptor cells induces multi-facet responses, which include generation of the photoreceptor potential, screening pigment migration and translocation of signaling proteins which is the focus of recent extensive research. Translocation of three signaling molecules is covered in this review: (1) Light-dependent translocation of arrestin from the cytosol to the signaling membrane, the rhabdomere, determines the lifetime of activated rhodopsin. Arrestin translocates in PIP3 and NINAC myosin III dependent manner, and specific mutations which disrupt the interaction between arrestin and PIP3 or NINAC also impair the light-dependent translocation of arrestin and the termination of the response to light. (2) Activation of Drosophila visual G protein, DGq, causes a massive and reversible, translocation of the alpha subunit from the signaling membrane to the cytosol, accompanied by activity-dependent architectural changes. Analysis of the translocation and the recovery kinetics of DGq(alpha) in wild-type flies and specific visual mutants indicated that DGq(alpha) is necessary but not sufficient for the architectural changes. (3) The TRP-like (TRPL) but not TRP channels translocate in a light-dependent manner between the rhabdomere and the cell body. As a physiological consequence of this light-dependent modulation of the TRP/TRPL ratio, the photoreceptors of dark-adapted flies operate at a wider dynamic range, which allows the photoreceptors enriched with TRPL to function better in darkness and dim background illumination. Altogether, signal-dependent movement of signaling proteins plays a major role in the maintenance and function of photoreceptor cells.  相似文献   

12.

Background

TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere), TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.

Methodology/Principal Findings

We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.

Conclusions/Significance

Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.  相似文献   

13.
In developing Drosophila photoreceptors, rhodopsin is trafficked to the rhabdomere, a specialized domain within the apical membrane surface. Rab11, a small GTPase implicated in membrane traffic, immunolocalizes to the trans-Golgi network, cytoplasmic vesicles and tubules, and the base of rhabdomeres. One hour after release from the endoplasmic reticulum, rhodopsin colocalizes with Rab11 in vesicles at the base of the rhabdomere. When Rab11 activity is reduced by three different genetic procedures, rhabdomere morphogenesis is inhibited and rhodopsin-bearing vesicles proliferate within the cytosol. Rab11 activity is also essential for development of MVB endosomal compartments; this is probably a secondary consequence of impaired rhabdomere development. Furthermore, Rab11 is required for transport of TRP, another rhabdomeric protein, and for development of specialized membrane structures within Garland cells. These results establish a role for Rab11 in the post-Golgi transport of rhodopsin and of other proteins to the rhabdomeric membranes of photoreceptors, and in analogous transport processes in other cells.  相似文献   

14.
The TRP channel and phospholipase C-mediated signaling   总被引:2,自引:0,他引:2  
Drosophila photoreceptors use a phospholipase C-mediated signaling for phototransduction. This pathway begins by light activation of a G-protein-coupled photopigment and ends by activation of the TRP and TRPL channels. The Drosophila TRP protein is essential for the high Ca2+ permeability and constitutes the major component of the light-induced current, thereby affecting both excitation and adaptation of the photoreceptor cell. TRP is the prototype of a large and diverse multigene family whose members are sharing a structure, which is conserved through evolution from the worm Caenorhabditis elegans to humans. TRP-related channel proteins are found in a variety of cells and tissues and show a large functional diversity although the gating mechanism of Drosophila TRP and of other TRP-related channels is still unknown.  相似文献   

15.
Degradation of IgM mu heavy chains in light chain-negative pre-B cells is independent of vesicular transport, as is evident by its insensitivity to brefeldin A or cell permeabilization. Conversely, by the same criteria, degradation of the secretory mu heavy chain in light chain-expressing B cells depends on vesicular transport. To investigate whether the presence of conventional light chains or the developmental stage of the B-lymphocytes dictates the degradative route taken by mu, we express in 70Z/3 pre-B cells either lambda ectopically or kappa by lipopolysaccharides-stimulated differentiation into B cells and show their assembly with mu heavy chains. The resulting sensitivity of mu degradation to brefeldin A and cell permeabilization demonstrates that conventional light chains, a hallmark of B cell differentiation, are necessary and sufficient to divert mu from a vesicular transport-independent to a vesicular transport-dependent degradative route. Although both routes converge at the ubiquitin-proteasome degradation pathway, only in light chain-expressing cells is vesicular transport a prerequisite for mu ubiquitination.  相似文献   

16.
In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P2 in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P2 was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P2 is not an inhibitor of TRPL channel activation. PI(4,5)P2 hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P2 levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P2 is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating.  相似文献   

17.
TRP channels in Drosophila photoreceptors: the lipid connection   总被引:2,自引:0,他引:2  
Hardie RC 《Cell calcium》2003,33(5-6):385-393
The light-sensitive current in Drosophila photoreceptors is mediated by transient receptor potential (TRP) channels, at least two members of which (TRP and TRPL) are activated downstream of phospholipase C (PLC) in response to light. Recent evidence is reviewed suggesting that Drosophila TRP channels are activated by one or more lipid products of PLC activity: namely diacylglycerol (DAG), its metabolites (polyunsaturated fatty acids) or the reduction in phosphatidylinositol 4,5-bisphosphate (PIP(2)). The most compelling evidence for this view comes from analysis of rdgA mutants which are unable to effectively metabolise DAG due to a defect in DAG kinase. The rdgA mutation leads to constitutive activation of both TRP and TRPL channels and dramatically increases sensitivity to light in hypomorphic mutations of PLC and G protein.  相似文献   

18.
The light response in Drosophila photoreceptor cells is mediated by a series of proteins that assemble into a macromolecular complex referred to as the signalplex. The central player in the signalplex is inactivation no afterpotential D (INAD), a protein consisting of a tandem array of five PDZ domains. At least seven proteins bind INAD, including the transient receptor potential (TRP) channel, which depends on INAD for localization to the phototransducing organelle, the rhabdomere. However, the determinants required for localization of INAD are not known. In this work, we showed that INAD was required for retention rather than targeting of TRP to the rhabdomeres. In addition, we demonstrated that TRP bound to INAD through the COOH terminus, and this interaction was required for localization of INAD. Other proteins that depend on INAD for localization, phospholipase C and protein kinase C, also mislocalized. However, elimination of any other member of the signalplex had no impact on the spatial distribution of INAD. A direct interaction between TRP and INAD did not appear to have a role in the photoresponse independent of localization of multiple signaling components. Rather, the primary function of the TRP/ INAD complex is to form the core unit required for localization of the signalplex to the rhabdomeres.  相似文献   

19.
The Drosophila visual transduction is the fastest known G protein-coupled signaling cascade and has been served as a model for understanding the molecular mechanisms of other G protein-coupled signaling cascades. Numbers of components in visual transduction machinery have been identified. Based on the functional characterization of these genes, a model for Drosophila phototransduction has been outlined, including rhodopsin activation, phosphoinoside signaling, and the opening of TRP and TRPL channels. Recently, the characterization of mutants, showing slow termination, revealed the physiological significance and the mechanism of rapid termination of light response.  相似文献   

20.
Small GTP binding proteins regulate diverse biological processes including gene expression, cytoskeleton reorganization, and protein and vesicular transport. While small GTPases have been investigated in a wide variety of cells, few studies have addressed their role in photoreceptors. In vertebrate retinal rods, the light stimulus is transmitted from rhodopsin via the pathway mediated by the heterotrimeric G protein transducin. To increase their sensitivity to light, photoreceptors accumulate remarkably high concentrations of rhodopsin and transducin in specialized cellular compartments, the outer segments (OS). Transport of these proteins from the inner segments is regulated by the small GTPases Rab6 and Rab8, which do not enter OS. Here, we asked if small G proteins have other functions in photoreceptors. We show that OS contain the small GTPase Rac-1, a member of the Rho family. In contrast to other cells, Rac-1 in OS is exclusively associated with the membranes and resides in lipid rafts. Most importantly, Rac-1 is activated by light. This activation is specifically blocked by a synthetic peptide corresponding to the Asn-Pro-X-X-Tyr motif found in rhodopsin, and Rac-1 coprecipitates with rhodopsin on Concanavalin A Sepharose. These data provide the first direct evidence for the existence of a novel pathway activated by rhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号