首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In animal contests, the widespread ability of contestants to assess their opponents’ resource holding potential (RHP) relative to their own, termed mutual assessment, has recently been questioned. It is possible that each contestant may only have information about its own abilities or state, incurring costs up to a particular threshold then giving up, termed self-assessment. We used a technique that provides a measure of fight motivation to discriminate between different assessment models during aggressive encounters between male convict cichlids, Amatitlania nigrofasciata. A novel stimulus was applied to cause a startle response in one contestant of an aggressively interacting, size mis-matched pair, whereby the animal temporarily stops fighting. The time taken to resume the contest has been verified to provide a measure of the motivation to fight, from which it is possible to infer if any visual information concerning opponent asymmetries has been gathered. The data showed support for two differing types of assessment. There was some support for self-assessment, with startle duration being negatively related to own size, and, in a later trial series some support for an opponent only assessment strategy, with startle duration being positively related to opponent size. These results are consistent with individuals learning to use visual information about opponents when deprived of other sensory cues. Evidence within a trial supporting visual mutual assessment was lacking and possible reasons for this are discussed.  相似文献   

4.
5.
Cerebral lateralization, the partitioning of cognitive function preferentially into one hemisphere of the brain, is a trait ubiquitous among vertebrates. Some species exhibit population level lateralization, where the pattern of cerebral lateralization is the same for most members of that species; however, other species show only individual level lateralization, where each member of the species has a unique pattern of lateralized brain function. The pattern of cerebral lateralization within a population and an individual has been shown to differ based on the stimulus being processed. It has been hypothesized that sociality within a species, such as shoaling behaviour in fish, may have led to the development and persistence of population level lateralization. Here we assessed cerebral lateralization in convict cichlids (Amatitlania nigrofasciata), a species that does not shoal as adults but that shoals briefly as juveniles. We show that both male and female convict cichlids display population level lateralization when in a solitary environment but only females show population level lateralization when in a perceived social environment. We also show that the pattern of lateralization differs between these two tasks and that strength of lateralization in one task is not predictive of strength of lateralization in the other task.  相似文献   

6.
7.
Cerebral lateralization is an evolutionarily ancient adaptation, apparently ubiquitous among vertebrates. Despite demonstrated advantages of having a more lateralized brain, substantial variability in the strength of lateralization exists within most species. The underlying reasons for the maintenance of this variation are largely unknown. Here, we present evidence that the strength of lateralization is linked to a behavioural trait, aggressiveness, in the convict cichlid (Archocentrus nigrofasciatus), and that this relationship depends on the sex of the fish. This finding suggests that individual variation in behaviour may be linked to variation in cerebral lateralization, and must be studied with regard to the sex of the animal.  相似文献   

8.
Extensive research over the last few decades has revealed that many acoustically communicating animals compensate for the masking effect of background noise by changing the structure of their signals. Familiar examples include birds using acoustic properties that enhance the transmission of vocalizations in noisy habitats. Here, we show that the effects of background noise on communication signals are not limited to the acoustic modality, and that visual noise from windblown vegetation has an equally important influence on the production of dynamic visual displays. We found that two species of Puerto Rican lizard, Anolis cristatellus and A. gundlachi, increase the speed of body movements used in territorial signalling to apparently improve communication in visually 'noisy' environments of rapidly moving vegetation. This is the first evidence that animals change how they produce dynamic visual signals when communicating in noisy motion habitats. Taken together with previous work on acoustic communication, our results show that animals with very different sensory ecologies can face similar environmental constraints and adopt remarkably similar strategies to overcome these constraints.  相似文献   

9.
10.
11.
12.
We staged contests between convict cichlids (Cichlasoma nigrofasciatum)that were matched for size and gender to test the influenceof prior information and resource value on the duration andstructure of fights. The contestants were separated before thecontest by either clear or opaque dividers to allow or preventvisual assessment, respectively. Contests were shorter in the"clear" than in the "opaque" treatment, suggesting that visualassessment occurred. The duration of lateral display, a noncontactdisplay, was shorter in the clear than in the opaque treatment,but the treatments did not differ significantly in the durationof three contact displays (biting, mouth wrestling, and circling).These results are consistent with the hypothesis that lateraldisplay provides primarily visual information, probably aboutbody size, whereas the other behavior patterns provide primarilynonvisual information, probably about strength. Second contestsbetween the same pair of fish were shorter than first contests,suggesting that the information acquired during the first contestmade it easier to resolve the second. After the subordinatefish from the second contest was given access to a mate, itfought more persistently so that third contests were longerthan second contests. Our results support the predictions ofthe sequential assessment model.  相似文献   

13.
Ectotherms have been shown being lateralized as well as mammals and birds. This is particularly evident in visual lateralization, i.e. the different use of the eyes, leading to use a specific eye to observe specific kind of stimuli and to process them with the correspondent contralateral hemisphere. Several lower vertebrates are facilitated in this from the lateral position of the eyes, enabling them to carry out more tasks simultaneously, controlled by different eyes and relative hemispheres. Predatory responses seem usually mediated by the right eye/left hemisphere in fishes, amphibians and some sauropsids, but there are no strong evidences of this in lizards. Eighteen wild males of the Common wall lizard Podarcis muralis were tested individually in captivity to ascertain whether they are lateralized to look at prey with a specific eye. The lizards were gently induced entering a 30-cm long central arm of a T-maze which led to a 44.5-cm long arm cross-arm at whose extremities there were two identical prey, Tenebrio molitor larvae, familiar to the lizards. We recorded what direction the lizards chose to reach the prey and the frequency and duration of head turning, indicative of looking either prey with the left or the right eye. We found that individuals show being lateralized at individual level. The preferred direction taken to reach the prey is the right for the majority of those (4 of 5) showing an evident preference, indicating also a possible form of laterality at population level. In addition, lizards maintained the same head side of the direction taken turned for more time towards the prey than the opposite head side, revealing an eye preference for observing this kind of cue. Our study demonstrates how males of Podarcis muralis have a visual lateralization to capture prey. Furthermore, it is another support to the hypothesis of vertebrate lateralization derivation from a common ancestor.  相似文献   

14.
Agonistic encounters between pairs of adult rick bass, Ambloplites rupestris were observed and the behaviour and changes in coloration of the dominant and subordinate individuals analysed. Dominance coloration involved the establishment of a high degree of visual contrast, whereas subordinate coloration made the animals darker and their coloration less striking, thus perhaps serving a protective function.  相似文献   

15.
Cerebral lateralization, an evolutionarily ancient and widespread phenomenon among vertebrates, is thought to bestow cognitive advantages. The advantages of lateralization at the individual-level do not necessarily require that the entire population share the same pattern of lateralization. In fact, directional bias in lateralization may lead to behavioural predictability and enhanced predator success or prey evasion. Recent theory has suggested that population-level lateralization may be favored if individuals are better able to perform coordinated behaviours, providing a distinct advantage in cooperative contexts. Here we test whether the highly social, cooperatively breeding cichlid fish Neolamprologus pulcher shows lateralized responses to a social stimulus. We found population-level biases in males; on average male N. pulcher use their right eye/left hemisphere to view their mirror image. Individual females had a preferred hemisphere, but these preferences appeared not to be directionally aligned among females. We discuss these results in the context of coordinated social behaviour and suggest future research directions.  相似文献   

16.
Subordinate males, which are excluded from reproduction often save energy by reducing their investment in sperm production. However, if their position in a dominance hierarchy changes suddenly they should also rapidly attain fertilization capability. Here, we asked how social suppression and ascension to dominance influences sperm quality, spermatogenesis and reproductive competence in the cichlid Astatotilapia burtoni, where reproduction is tightly coupled to social status. Dominant territorial (T) males are reproductively active while subordinate non-territorial (NT) males are suppressed, but given the opportunity, NT males will perform dominance behaviours within minutes and attain T male testes size within days. Using the thymidine analogue 5-bromo-2-deoxyuridine (BrdU) to label germ cell proliferation, we found that the spermatogenic cycle takes approximately 11-12 days, and social status had no effect on proliferation, suggesting that spermatogenesis continues during reproductive suppression. Although sperm velocity did not differ among social states, NT males had reduced sperm motility. Remarkably, males ascending in status showed sperm motility equivalent to T males within 24 h. Males also successfully reproduced within hours of social opportunity, despite four to five weeks of suppression and reduced testis size. Our data suggest that NT males maintain reproductive potential during suppression possibly as a strategy to rapidly improve reproductive fitness upon social opportunity.  相似文献   

17.
18.
Despite considerable study, mystery surrounds the use of signals that initiate cooperative hunting in animals. Using a labyrinth test chamber, we examined whether a lionfish, Dendrochirus zebra, would initiate cooperative hunts with piscine partners. We found that D. zebra uses a stereotyped flared fin display to alert conspecific and heterospecific lionfish species Pterois antennata to the presence of prey. Per capita success rate was significantly higher for cooperative hunters when compared with solitary ones, with hunt responders assisting hunt initiators in cornering the prey using their large extended pectoral fins. The initiators would most often take the first strike at the group of prey, but both hunters would then alternate striking at the remaining prey. Results suggest that the cooperative communication signal may be characteristic to the lionfish family, as interspecific hunters were equally coordinated and successful as intraspecific hunters. Our findings emphasize the complexity of collaborative foraging behaviours in lionfish; the turn-taking in strikes suggests that individuals do not solely try to maximize their own hunting success: instead they equally share the resources between themselves. Communicative group hunting has enabled Pteroine fish to function as highly efficient predators.  相似文献   

19.
It has recently been shown that some non-human animals can cross-modally recognize members of their own taxon. What is unclear is just how plastic this recognition system can be. In this study, we investigate whether an animal, the domestic horse, is capable of spontaneous cross-modal recognition of individuals from a morphologically very different species. We also provide the first insights into how cross-modal identity information is processed by examining whether there are hemispheric biases in this important social skill. In our preferential looking paradigm, subjects were presented with two people and playbacks of their voices to determine whether they were able to match the voice with the person. When presented with familiar handlers subjects could match the specific familiar person with the correct familiar voice. Horses were significantly better at performing the matching task when the congruent person was standing on their right, indicating marked hemispheric specialization (left hemisphere bias) in this ability. These results are the first to demonstrate that cross-modal recognition in animals can extend to individuals from phylogenetically very distant species. They also indicate that processes governed by the left hemisphere are central to the cross-modal matching of visual and auditory information from familiar individuals in a naturalistic setting.  相似文献   

20.
Behavioral lateralization with left‐ and right‐hand use is common in the Animal Kingdom and can be advantageous for social species. The existence of a preferential use of the hands during agonistic interactions has been described for a number of invertebrate and vertebrate species. Bats compose the second largest order of mammals. They not only use their forelimbs for flight but also agonistic interactions. However, whether bat species show a population‐level lateralized aggressive display has largely been unexplored. Here, we examine the lateralization of boxing displays during agonistic interactions in male Great Himalayan leaf‐nosed bats, Hipposideros armiger, from three different populations. We found a population‐level lateralization of boxing displays: Males from all three populations show a preferential use of the left forearm to attack opponents. In addition, left‐handed boxers have higher fighting success over right‐handed boxers. This study expands our knowledge of the handedness of bats and highlights the role of behavioral lateralization in conflict resolution in nocturnal mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号