首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The supply of transfusable red blood cells (RBCs) is not sufficient in many countries. If erythroid cell lines able to produce transfusable RBCs in vitro were established, they would be valuable resources. However, such cell lines have not been established. To evaluate the feasibility of establishing useful erythroid cell lines, we attempted to establish such cell lines from mouse embryonic stem (ES) cells.

Methodology/Principal Findings

We developed a robust method to obtain differentiated cell lines following the induction of hematopoietic differentiation of mouse ES cells and established five independent hematopoietic cell lines using the method. Three of these lines exhibited characteristics of erythroid cells. Although their precise characteristics varied, each of these lines could differentiate in vitro into more mature erythroid cells, including enucleated RBCs. Following transplantation of these erythroid cells into mice suffering from acute anemia, the cells proliferated transiently, subsequently differentiated into functional RBCs, and significantly ameliorated the acute anemia. In addition, we did not observe formation of any tumors following transplantation of these cells.

Conclusion/Significance

To the best of our knowledge, this is the first report to show the feasibility of establishing erythroid cell lines able to produce mature RBCs. Considering the number of human ES cell lines that have been established so far, the intensive testing of a number of these lines for erythroid potential may allow the establishment of human erythroid cell lines similar to the mouse erythroid cell lines described here. In addition, our results strongly suggest the possibility of establishing useful cell lines committed to specific lineages other than hematopoietic progenitors from human ES cells.  相似文献   

2.
Lipocalin 2 (LCN2), a secreted protein of the lipocalin family, induces apoptosis in some types of cells and inhibits bacterial growth by sequestration of the iron-laden bacterial siderophore. We have recently reported that LCN2 inhibits the production of red blood cells in the mouse. Here we analyzed the role of LCN2 in human hematopoiesis. Expression of LCN2 was observed not only in mature cells such as those of the granulocyte/macrophage and erythroid lineages but also in hematopoietic stem/progenitor cells. We also examined expression of two candidate receptors for LCN2, brain type organic cation transporter (BOCT) and megalin, in various cell types. BOCT showed relatively high levels of expression in erythroid and hematopoietic stem/progenitor cells but lower levels in granulocyte/macrophage and T lymphoid cells. Megalin was expressed at high levels in T lymphoid and erythroid cells but at lower levels in granulocyte/macrophage lineage cells. LCN2 suppressed the growth of erythroid and monocyte/macrophage lineages in vitro, but did not have this effect on cells of other lineages. In addition, immature hematopoietic stem/progenitor cells were not sensitive to LCN2. These results demonstrate a lineage-specific role for LCN2 in human hematopoiesis that is reminiscent of its effects upon mouse hematopoiesis and strongly suggest an important in vivo function of LCN2 in the regulation of human hematopoiesis.  相似文献   

3.
Exposure of hematopoietic progenitors to gamma irradiation induces p53-dependent apoptosis. However, host responses to DNA damage are not uniform and can be modified by various factors. Here, we report that a split low-dose total-body irradiation (TBI) (1.5 Gy twice) to the host causes prominent apoptosis in bone marrow cells of Friend leukemia virus (FLV)-infected C3H mice but not in those of FLV-infected DBA mice. In C3H mice, the apoptosis occurs rapidly and progressively in erythroid cells, leading to lethal host anemia, although treatment with FLV alone or TBI alone induced minimal apoptosis in bone marrow cells. A marked accumulation of P53 protein was demonstrated in bone marrow cells from FLV-infected C3H mice 12 h after treatment with TBI. Although a similar accumulation of P53 was also observed in bone marrow cells from FLV-infected DBA mice treated with TBI, the amount appeared to be parallel to that of mice treated with TBI alone and was much lower than that of FLV- plus TBI-treated C3H mice. To determine the association of p53 with the prominent enhancement of apoptosis in FLV- plus TBI-treated C3H mice, p53 knockout mice of the C3H background (C3H p53(-/-)) were infected with FLV and treated with TBI. As expected, p53 knockout mice exhibited a very low frequency of apoptosis in the bone marrow after treatment with FLV plus TBI. Further, C3H p53(-/-) --> C3H p53(+/+) bone marrow chimeric mice treated with FLV plus TBI survived even longer than the chimeras treated with FLV alone. These findings indicate that infection with FLV strongly enhances radiation-induced apoptotic cell death of hematopoietic cells in host animals and that the apoptosis occurs through a p53-associated signaling pathway, although the response was not uniform in different host strains.  相似文献   

4.
Ethanol consumption represents a major risk factor for cancer development, and a significant fraction of hepatocarcinomas arises in alcoholic liver cirrhosis. Increasing evidence indicates that ethanol acts as a tumor promoter on genetically initiated cells, by increasing the intracellular concentration of reactive oxygen species and promoting tissue necrosis/regeneration and cell proliferation. The tumor suppressor p53 restrains the expansion of carcinogen-initiated cells by inducing cell cycle arrest and apoptosis; accordingly, p53-deficient mice develop spontaneous and chemically induced neoplasms at a much higher frequency than normal mice. In normal mice exposed to a subacute (3 weeks) ethanol intoxication, a significant increase in the number of apoptotic hepatocytes was observed in concomitance with the up-regulation of the mitochondrial superoxide scavenger MnSOD, a reliable indicator of oxidative stress. Cell death occurred in the absence of liver inflammation and necrosis. Ethanol-induced hepatocyte apoptosis was completely abrogated in the p53 null background, suggesting that the tumor suppressor is necessary for hepatocyte death by ethanol. Accordingly, p53 -/- MEF were, unlike wild type cells, completely insensitive up to 0.5M ethanol in the culture medium. Strikingly, marked and widespread signs of dysplasia, with nuclear pleomorphisms and initial loss of normal architecture, heralding malignant transformation, were scored in all the mutant mice exposed to ethanol, but not in the control-fed littermates nor in ethanol-fed normal mice. These observations suggest that p53-dependent apoptosis restrains the tumorigenic effect of ethanol on liver cells, in agreement with the frequent loss of p53 function in HCC, and reveal an unexpected carcinogenic potential of alcohol which appears to be independent from the induction of cirrhosis and hepatocyte regeneration.  相似文献   

5.
Signal transduction mediated by Fas-associated death domain protein (FADD) represents a paradigm of coregulation of apoptosis and cellular proliferation. During apoptotic signaling induced by death receptors including Fas, FADD is required for the recruitment and activation of caspase 8. In addition, a death receptor-independent function of FADD is essential for embryogenesis. In previous studies, FADD deficiency in embryonic stem cells resulted in a complete lack of B cells and dramatically reduced T cell numbers, as shown by Rag1(-/-) blastocyst complementation assays. However, T-specific FADD-deficient mice contained normal numbers of thymocytes and slightly reduced peripheral T cell numbers, whereas B cell-specific deletion of FADD led to increased peripheral B cell numbers. It remains undetermined what impact an FADD deficiency has on hematopoietic stem cells and progenitors. The current study analyzed the effect of simultaneous deletion of FADD in multiple cell types, including bone marrow cells, by using the IFN-inducible Mx1-cre transgene. The resulting FADD mutant mice did not develop lymphoproliferation diseases, unlike Fas-deficient mice. Instead, a time-dependent depletion of peripheral FADD-deficient lymphocytes was observed. In the bone marrow, a lack of FADD led to a dramatic decrease in the hematopoietic stem cells and progenitor-enriched population. Furthermore, FADD-deficient bone marrow cells were defective in their ability to generate lymphoid, myeloid, and erythroid cells. Thus, the results revealed a temporal requirement for FADD. Although dispensable during lymphopoiesis post lineage commitment, FADD plays a critical role in early hematopoietic stages in the bone marrow.  相似文献   

6.
The anti-apoptotic Bcl-2 protein has the remarkable ability to prevent cell death from several noxious stimuli. Intriguingly, Bcl-2 overexpression in one cell type has been reported to protect against cell death in neighboring non-Bcl-2 overexpressing cell types. The mechanism of this "trans" protection has been speculated to be secondary to the release of a cytoprotective factor by Bcl-2 overexpressing cells. We employed a series of adoptive transfer experiments in which lymphocytes that overexpress Bcl-2 were administered to either wild type mice or mice lacking mature T and B cells (Rag-1-/-) to detect the presence or absence of the putative protective factor. We were unable to demonstrate "trans" protection. However, adoptive transfer of apoptotic or necrotic cells exacerbated the degree of apoptotic death in neighboring non-Bcl-2 overexpressing cells (p < or= 0.05). Therefore, this data suggests that dying cells emit signals triggering cell death in neighboring non-Bcl-2 overexpressing cells, i.e., a "trans" destructive effect.  相似文献   

7.
Signaling mediated by activation of the transmembrane receptor Notch influences cell-fate decisions, differentiation, proliferation, and cell survival. Activated Notch reduces proliferation by altering cell-cycle kinetics and promotes differentiation in hematopoietic progenitor cells. Here, we investigated if the G(1) arrest and differentiation induced by activated mNotch1 are dependent on tumor suppressor p53, a critical mediator of cellular growth arrest. Multipotent wild-type p53-expressing (p53(wt)) and p53-deficient (p53(null)) hematopoietic progenitor cell lines (FDCP-mix) carrying an inducible mNotch1 system were used to investigate the effects of proliferation and differentiation upon mNotch1 signaling. While activated Notch reduced proliferation of p53(wt)-cells, no change was observed in p53(null)-cells. Activated Notch upregulated the p53 target p21(cip/waf) in p53(wt)-cells, but not in p53(null)-cells. Induction of the p21(cip/waf) gene by activated Notch was mediated by increased binding of p53 to p53-binding sites in the p21(cip/waf) promoter and was independent of the canonical RBP-J binding site. Re-expression of p53(wt) in p53(null) cells restored the inhibition of proliferation by activated Notch. Thus, activated Notch inhibits proliferation of multipotent hematopoietic progenitor cells via a p53-dependent pathway. In contrast, myeloid and erythroid differentiation was similarly induced in p53(wt) and p53(null) cells. These data suggest that Notch signaling triggers two distinct pathways, a p53-dependent one leading to a block in proliferation and a p53-independent one promoting differentiation.  相似文献   

8.
Anti-TU 67 is a murine monoclonal antibody that recognizes the transferrin receptor. With respect to hematopoietic cells TU 67 is expressed by human multipotent colony-forming cells (CFU-Mix), erythroid progenitor cells (BFU-E and CFU-E) and a fraction of granulocyte/monocyte colony forming cells, but is not expressed by mature hematopoietic cells including erythrocytes, platelets, lymphocytes, and peripheral blood myeloid cells. The TU 67-positive fraction of normal bone marrow, separated by fluorescence-activated cell sorting (FACS) or immune rosettes, contained 87% of the erythroid progenitor cells. Erythroid progenitor cells were enriched up to 50-fold by using a combination of monoclonal antibodies to deplete mature hematopoietic cells, followed by positive selection of BFU-E and CFU-E by TU 67 antibody.  相似文献   

9.
Umbilical cord blood (UCB) is increasingly being used for human hematopoietic stem cell (HSC) transplantation in children but often requires pooling multiple cords to obtain sufficient numbers for transplantation in adults. To overcome this limitation, we have used an ex vivo two-week culture system to expand the number of hematopoietic CD34(+) cells in cord blood. To assess the in vivo function of these expanded CD34(+) cells, cultured human UCB containing 1 x 10(6) CD34(+) cells were transplanted into conditioned NOD-scid IL2rgamma(null) mice. The expanded CD34(+) cells displayed short- and long-term repopulating cell activity. The cultured human cells differentiated into myeloid, B-lymphoid, and erythroid lineages, but not T lymphocytes. Administration of human recombinant TNFalpha to recipient mice immediately prior to transplantation promoted human thymocyte and T-cell development. These T cells proliferated vigorously in response to TCR cross-linking by anti-CD3 antibody. Engrafted TNFalpha-treated mice generated antibodies in response to T-dependent and T-independent immunization, which was enhanced when mice were co-treated with the B cell cytokine BLyS. Ex vivo expanded CD34(+) human UCB cells have the capacity to generate multiple hematopoietic lineages and a functional human immune system upon transplantation into TNFalpha-treated NOD-scid IL2rgamma(null) mice.  相似文献   

10.
X-ray-induced (4Gy) chromosomal translocations were studied in mouse spermatogonial stem cells with different p53 status by meiotic analysis at the spermatocyte stage, many cell generations after the moment irradiation. The results show enhanced recovery of translocations from p53 -/- mice relative to +/- and +/+ littermates. The enhanced recovery is probably due to an altered cell cycle distribution of the stem cells in the -/- mice leading to less radioresistant G(0)-G(1) transition cells, rather than differences in apoptotic response. Experiments with the poly(ADP-ribose)polymerase inhibitor 3-aminobenzamide (3-AB) indicate that, in contrast to the situation in +/+ mice, no sensitization in the p53-deficient mice occurred for both testis weight loss and the recovery of induced translocations. This result also points to the presence of less radioresistant stem cells in the testis of p53 null mice.  相似文献   

11.
Recombinant IL-3 (rIL-3) is a potent colony stimulating factor capable of stimulating early hematopoietic pluripotential progenitor cells and of supporting the differentiation of multiple cells. IL-3 has also been shown to have effects on mature, differentiated circulating cells including eosinophils and T cells. We evaluated the role of exogenous rIL-3 in the generation of cells with LAK activity from murine splenocytes and human bone marrow, spleen, unseparated PBMC and purified null cell preparations. rIL-3 was unable to generate lytic activity from any of these populations by itself and appeared to decrease LAK activity in bone marrow cultures containing high dose IL-2, (bone marrow derived cells (n = 3) with LAK activity for fresh tumor, mean lytic units(LU) 94.6 +/- 63.5 vs 32.8 +/- 44.8 for IL-2 and IL-2 plus IL-3 cultures, respectively p2 less than 0.05). Unlike previous reports testing murine cells, IL-3 priming and subsequent culture in IL-2 of human unseparated bone marrow cells or human or murine splenocytes, failed to generate long-term cultures with lytic activity. IL-3 did, however, induce a dose dependent stimulation of bone marrow and null cell preparations (mean null cell stimulation (3H Thymidine incorporation) with IL-3, 436 +/- 168 cpm vs 9802 +/- 9799 cpm, for 0 vs 10(3) units of IL-3, respectively n = 4, p2 less than 0.05). Furthermore, in bone marrow, unseparated PBMC and null cell cultures, the addition of rIL-3 generated characteristic large blastic appearing cells with prominent basophilic granules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Numerous red blood cells are generated every second from proliferative progenitor cells under a homeostatic state. Increased erythropoietic activity is required after myelo-suppression as a result of chemo-radio therapies. Our previous study revealed that the endothelial cell-selective adhesion molecule (ESAM), an authentic hematopoietic stem cell marker, plays essential roles in stress-induced hematopoiesis. To determine the physiological importance of ESAM in erythroid recovery, ESAM-knockout (KO) mice were treated with the anti-cancer drug, 5-fluorouracil (5-FU). ESAM-KO mice experienced severe and prolonged anemia after 5-FU treatment compared to wild-type (WT) mice. Eight days after the 5-FU injection, compared to WT mice, ESAM-KO mice showed reduced numbers of erythroid progenitors in bone marrow (BM) and spleen, and reticulocytes in peripheral blood. Megakaryocyte-erythrocyte progenitors (MEPs) from the BM of 5-FU-treated ESAM-KO mice showed reduced burst forming unit-erythrocyte (BFU-E) capacities than those from WT mice. BM transplantation revealed that hematopoietic stem/progenitor cells from ESAM-KO donors were more sensitive to 5-FU treatment than that from WT donors in the WT host mice. However, hematopoietic cells from WT donors transplanted into ESAM-KO host mice could normally reconstitute the erythroid lineage after a BM injury. These results suggested that ESAM expression in hematopoietic cells, but not environmental cells, is critical for hematopoietic recovery. We also found that 5-FU treatment induces the up-regulation of ESAM in primitive erythroid progenitors and macrophages that do not express ESAM under homeostatic conditions. The phenotypic change seen in macrophages might be functionally involved in the interaction between erythroid progenitors and their niche components during stress-induced acute erythropoiesis. Microarray analyses of primitive erythroid progenitors from 5-FU-treated WT and ESAM-KO mice revealed that various signaling pathways, including the GATA1 system, were impaired in ESAM-KO mice. Thus, our data demonstrate that ESAM expression in hematopoietic progenitors is essential for erythroid recovery after a BM injury.  相似文献   

13.
To investigate the potential functional cooperation between p27Kip1 and p130 in vivo, we generated mice deficient for both p27Kip1 and p130. In p27Kip1-/-; p130-/- mice, the cellularity of the spleens but not the thymi is significantly increased compared with that of their p27Kip1-/- counterparts, affecting the lymphoid, erythroid, and myeloid compartments. In vivo cell proliferation is significantly augmented in the B and T cells, monocytes, macrophages, and erythroid progenitors in the spleens of p27Kip1-/-; p130-/- animals. Immunoprecipitation and immunodepletion studies indicate that p130 can compensate for the absence of p27Kip1 in binding to and repressing CDK2 and is the predominant CDK-inhibitor associated with the inactive CDK2 in the p27Kip1-/- splenocytes. The finding that the p27Kip1-/-; p130-/- splenic B cells are hypersensitive to mitogenic stimulations in vitro lends support to the concept that the hyperproliferation of splenocytes is not a result of the influence of their microenvironment. In summary, our findings provide genetic and molecular evidence to show that p130 is a bona fide cyclin-dependent kinase inhibitor and cooperates with p27Kip1 to regulate hematopoietic cell proliferation in vivo.  相似文献   

14.
15.
Embryonic stem (ES) cells differentiate into multiple hematopoietic lineages during embryoid body formation in vitro, but to date, an ES-derived hematopoietic stem cell has not been identified and subjected to clonal analysis in a manner comparable with hematopoietic stem cells from adult bone marrow. As the chronic myeloid leukemia-associated BCR/ABL oncogene endows the adult hematopoietic stem cell with clonal dominance without inhibiting pluripotent lymphoid and myeloid differentiation, we have used BCR/ABL as a tool to enable engraftment and clonal analysis. We show that embryoid body-derived hematopoietic progenitors expressing BCR/ABL maintain a primitive hematopoietic blast stage of differentiation and generate only primitive erythroid cell types in vitro. These cells can be cloned, and when injected into irradiated adult mice, they differentiate into multiple myeloid cell types as well as T and B lymphocytes. While the injected cells express embryonic (beta-H1) globin, donor-derived erythroid cells in the recipient express only adult (beta-major) globin, suggesting that these cells undergo globin gene switching and developmental maturation in vivo. These data demonstrate that an embryonic hematopoietic stem cell arises in vitro during ES cell differentiation that constitutes a common progenitor for embryonic erythroid and definitive lymphoid-myeloid hematopoiesis.  相似文献   

16.
Characterization of hematopoiesis/erythropoiesis in thalassemias from multipotent primitive cells to mature erythrocytes is of fundamental importance and clinical relevance. We investigated this process in alpha- and beta-globin hemizygous mice, lacking the two adult tandemly organized genes from either the alpha- or beta-globin locus. Although both mice backcrossed on a homogeneous background exhibited similar reduced red blood cell (RBC) survival, beta-globin hemizygous mice had less severe reticulocyte loss and globin chain imbalance, suggesting an apparently milder thalassemia than for alpha-globin hemizygous mice. In contrast, however, beta-globin hemizygous mice displayed a more marked perturbation of hematologic parameters. Quantification of erythroid precursor subpopulations in marrow and spleen of beta-globin hemizygous mice showed more severely impaired maturation from the basophilic to orthochromatophilic erythroblasts and substantial loss of these late precursors probably as a consequence of a greater susceptibility to an excess of free alpha-chain than beta-chain. Hence, only erythroid precursors exhibiting stochastically moderate chain imbalance would escape death and mature to reticulocyte/RBC stage, leading to survival and minimal loss of reticulocytes in the beta-globin hemizygous mice. Furthermore, in response to the ineffective erythropoiesis in beta-globin hemizygous mice, a dynamic compensatory hematopoiesis was observed at earlier differentiation stage as evidenced by a significant increase of erythroid progenitors (erythroid colony-forming units approximately 100-fold) as well as of multipotent primitive cells (day 12 spleen colony-forming units approximately 7-fold). This early compensatory mechanism was less pronounced in alpha-globin hemizygous mice. The expansion of multipotent primitive and potentially stem cell populations, taken together with ineffective erythropoiesis and increased reticulocyte/RBC destruction could confer major cumulative advantage for gene targeting/bone marrow transplantation. Therefore, this study not only corroborated the strong potential effectiveness of transplantation for thalassemic hematopoietic therapy but also demonstrated the existence of a differential regulatory response for alpha- and beta-thalassemia.  相似文献   

17.
18.
19.
Hematopoietic progenitor cells from Fanconi anemia (FA) group C (FA-C) patients display hypersensitivity to the apoptotic effects of gamma interferon (IFN-gamma) and constitutively express a variety of IFN-dependent genes. Paradoxically, however, STAT1 activation is suppressed in IFN-stimulated FA cells, an abnormality corrected by transduction of normal FANCC cDNA. We therefore sought to define the specific role of FANCC protein in signal transduction through receptors that activate STAT1. Expression and phosphorylation of IFN-gamma receptor alpha chain (IFN-gammaRalpha) and JAK1 and JAK2 tyrosine kinases were equivalent in both normal and FA-C cells. However, in coimmunoprecipitation experiments STAT1 did not dock at the IFN-gammaR of FA-C cells, an abnormality corrected by transduction of the FANCC gene. In addition, glutathione S-transferase fusion genes encoding normal FANCC but not a mutant FANCC bearing an inactivating point mutation (L554P) bound to STAT1 in lysates of IFN-gamma-stimulated B cells and IFN-, granulocyte-macrophage colony-stimulating factor- and stem cell factor-stimulated MO7e cells. Kinetic studies revealed that the initial binding of FANCC was to nonphosphorylated STAT1 but that subsequently the complex moved to the receptor docking site, at which point STAT1 became phosphorylated. The STAT1 phosphorylation defect in FA-C cells was functionally significant in that IFN induction of IFN response factor 1 was suppressed and STAT1-DNA complexes were not detected in nuclear extracts of FA-C cells. We also determined that the IFN-gamma hypersensitivity of FA-C hematopoietic progenitor cells does not derive from STAT1 activation defects because granulocyte-macrophage CFU and erythroid burst-forming units from STAT1(-/-) mice were resistant to IFN-gamma. However, BFU-E responses to SCF and erythropoietin were suppressed in STAT(-/-) mice. Consequently, because the FANCC protein is involved in the activation of STAT1 through receptors for at least three hematopoietic growth and survival factor molecules, we reason that FA-C hematopoietic cells are excessively apoptotic because of an imbalance between survival cues (owing to a failure of STAT1 activation in FA-C cells) and apoptotic and mitogenic inhibitory cues (constitutively activated in FA-C cells in a STAT1-independent fashion).  相似文献   

20.
Cytokines as suppressors of apoptosis   总被引:2,自引:0,他引:2  
Many cytokines have been isolated by their ability to induce growth and have been called growth factors. But these cytokines are also essential to induce cell viability, and cell viability and growth can be separately regulated. Using as examples myeloid hematopoietic cells, lymphocytes and neuronal cells, in vitro and in vivo studies have shown the role of cytokines in inducing viability of different cell types during development to mature cells. Some cytokines can act on more than one cell type. Cytokines induce viability of normal and cancer cells by suppressing the apoptotic machinery activated by wild-type p53, or by cytotoxic agents including irradiation and compounds used in cancer chemotherapy. Cytokines can be used to decrease apoptosis in normal cells and inhibition of cytokine activity may improve cancer therapy by enhancing apoptosis in cancer cells. The apoptosis suppressing function of cytokines is mediated by changing the balance in the activity of apoptosis inducing and suppressing genes. Apoptosis suppression is upstream of caspase activation in the apoptotic process. Cytokines can suppress multiple pathways leading to apoptosis, only some of which were suppressed by other agents such as some antioxidants, Ca2+-mobilizing compounds and protease inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号