首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A method for determining the lifetime of unstable ions is described. The method is based on measuring the decrease in the ion beam current onto a fixed detector with increasing path length of the ion beam from the ion source to the detector. The measurements performed for D? 2 and HD? molecular ions have shown that their lifetimes are 3.5 ± 0.1 and 4.4 ± 0.1 μs, respectively.  相似文献   

2.
3.
The contributions of Ca2+, H+, and Cl in generation of variation potentials (VP) in 3- to 4-week-old pumpkin (Cucurbita pepo L., cv. Mozoleevskaya) plants were assessed. During VP generation, transient alkalinization of the medium around the stem was recorded with a potentiometric method. The pH changes were kinetically similar to the electric potential changes and were apparently due to temporal suppression of the plasma-membrane electrogenic H+ pump. These data and the observed inhibition of VP in the stem zone treated locally with a metabolic inhibitor (NaN3) indicate that the VP generation is related to the reversible suppression of the H+-pump. The anion channel blocker (ethacrynic acid) decelerated significantly the front slope of VP and reduced the VP amplitude. A short-term increase in external Cl concentration around the stem was observed during potential transients representing the VP front slope and the pulses integrated into VP. The removal of Ca2+ from extracellular medium inhibited the VP generation. It is proposed that Ca2+ plays a role in activation of anion channels and in the H+-pump inactivation. The VP generation is probably determined by a complex mechanism, with contributions from passive ion fluxes (Ca2+, Cl) moving along the electrochemical gradients and from changes in the electrogenic pump activity.  相似文献   

4.
V. N. Umetskaya 《Biophysics》2016,61(4):585-590
NMR proton spectra were recorded in the range of proton resonance in the nucleotide aromatic ring of monomeric ATP–G-actin and the Mg2+–ATP–G-actin solutions in D2O to study the mechanism of ATP–G-actin hydrolysis and its role in F-actin formation in Mg2+-containing solutions. The experimental data show variations in the proton chemical shifts of the H2 and H8 peaks and splitting of the H8 resonance peak of G-actin-bound ATP adenine caused by interaction with magnesium dication. The observed variations in spectra are explained by hydrolysis of monomeric ATP–G-actin to ADP–G-actin, which is regarded as the initial stage of the G-actin to F-actin transformation.  相似文献   

5.
The Na+/Mg2+ exchanger represents the main Mg2+ extrusion mechanism operating in mammalian cells including hepatocytes. We have previously reported that this exchanger, located in the basolateral domain of the hepatocyte, promotes the extrusion of intravesicular trapped Mg2+ for extravesicular Na+ with ratio 1. This electrogenic exchange is supported by the accumulation of tetraphenyl-phosphonium within the vesicles at the time when Mg2+ efflux occurs. In this present study, the role of extra- and intra-vesicular Cl? on the Na+/Mg2+ exchange ratio was investigated. The results reported here suggest that Cl? ions are not required for the Na+ to Mg2+ exchange to occur, but the stoichiometry ratio of the exchanger switches from electrogenic (1Na in + :1 Mg out 2+ ) in the presence of intravesicular Cl? to electroneutral (2Na in + :1 Mg out 2+ ) in their absence. In basolateral liver plasma membrane vesicles loaded with MgCl2 labeled with 36Cl?, a small but significant Cl? efflux (~30 nmol Cl?/mg protein/1 min) is observed following addition of NaCl or Na-isethionate to the extravesicular medium. Both Cl? and Mg2+ effluxes are inhibited by imipramine but not by amiloride, DIDS, niflumic acid, bumetanide, or furosemide. In vesicles loaded with Mg-gluconate and stimulated by Na-isethionate, an electroneutral Mg2+ extrusion is observed. Taken together, these results suggest that the Na+/Mg2+ exchanger can operate irrespective of the absence or the presence of Cl? in the extracellular or intracellular environment. Changes in trans-cellular Cl? content, however, can affect the modus operandi of the Na+/Mg2+ exchanger, and consequently impact cellular Na+ and Mg2+ homeostasis as well as the hepatocyte membrane potential.  相似文献   

6.
We have previously shown that the membrane conductance of mIMCD-3 cells at a holding potential of 0 mV is dominated by a Ca2+-dependent Cl current (ICLCA). Here we report that ICLCA activity is also voltage dependent and that this dependence on voltage is linked to the opening of a novel Al3+-sensitive, voltage-dependent, Ca2+ influx pathway. Using whole-cell patch-clamp recordings at a physiological holding potential (−60 mV), ICLCA was found to be inactive and resting currents were predominantly K+ selective. However, membrane depolarization to 0 mV resulted in a slow, sigmoidal, activation of ICLCA (T 0.5 ~ 500 s), while repolarization in turn resulted in a monoexponential decay in ICLCA (T 0.5 ~ 100 s). The activation of ICLCA by depolarization was reduced by lowering extracellular Ca2+ and completely inhibited by buffering cytosolic Ca2+ with EGTA, suggesting a role for Ca2+ influx in the activation of ICLCA. However, raising bulk cytosolic Ca2+ at −60 mV did not produce sustained ICLCA activity. Therefore ICLCA is dependent on both an increase in intracellular Ca2+ and depolarization to be active. We further show that membrane depolarization is coupled to opening of a Ca2+ influx pathway that displays equal permeability to Ca2+ and Ba2+ ions and that is blocked by extracellular Al3+ and La3+. Furthermore, Al3+ completely and reversibly inhibited depolarization-induced activation of ICLCA, thereby directly linking Ca2+ influx to activation of ICLCA. We speculate that during sustained membrane depolarization, calcium influx activates ICLCA which functions to modulate NaCl transport across the apical membrane of IMCD cells.  相似文献   

7.
Since its introduction approximately seven years ago, selamectin (Stronghold®/Revolution®, Pfizer Inc.) has been used off-label to treat a number of ecto- and endoparasite conditions in dogs and cats. It has been used as a successful prophylactic against Dirofilaria repens and as a treatment for Aelurostrongylus abstrusus in cats. It has also been used to treat notoedric mange, infestation with the nasal mite Pneumonyssoides caninum, Cheyletiella spp. and Neotrombicula autumnalis infestations and larval Cordylobia anthropophaga infection. However, to date attempts to treat generalised canine demodicosis have not been successful. In all cases, treatment was apparently well tolerated by the host.  相似文献   

8.
We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.  相似文献   

9.
PsbP is an extrinsic protein of PSII having a function of Ca2+ and Cl? retention in the water-oxidizing center (WOC). In order to understand the mechanism how PsbP regulates the Cl? binding in WOC, we examined the effect of PsbP depletion on the protein structures around the Cl? sites using Fourier transform infrared (FTIR) spectroscopy. Light-induced FTIR difference spectra upon the S1→S2 transition were obtained using Cl?-bound and NO3?-substituted PSII membranes in the presence and absence of PsbP. A clear difference in the amide I band changes by PsbP depletion was observed between Cl?-bound and NO3?-substituted PSII samples, indicating that PsbP binding perturbed the protein conformations around the Cl?ion(s) in WOC. It is suggested that PsbP stabilizes the Cl? binding by regulating the dissociation constant of Cl? and/or an energy barrier of Cl? dissociation through protein conformational changes around the Cl? ion(s).  相似文献   

10.
Lumenal extrinsic proteins PsbO, PsbP, and PsbQ of photosystem II (PSII) protect the catalytic cluster Mn4CaO5 of oxygen-evolving complex (OEC) from the bulk solution and from soluble compounds in the surrounding medium. Extraction of PsbP and PsbQ proteins by NaCl-washing together with chelator EGTA is followed also by the depletion of Ca2+ cation from OEC. In this study, the effects of PsbP and PsbQ proteins, as well as Ca2+ extraction from OEC on the kinetics of the reduced primary electron acceptor (QA ?) oxidation, have been studied by fluorescence decay kinetics measurements in PSII membrane fragments. We found that in addition to the impairment of OEC, removal of PsbP and PsbQ significantly slows the rate of electron transfer from QA ? to the secondary quinone acceptor QB. Electron transfer from QA ? to QB in photosystem II membranes with an occupied QB site was slowed down by a factor of 8. However, addition of EGTA or CaCl2 to NaCl-washed PSII did not change the kinetics of fluorescence decay. Moreover, the kinetics of QA ? oxidation by QB in Ca-depleted PSII membranes obtained by treatment with citrate buffer at pH 3.0 (such treatment keeps all extrinsic proteins in PSII but extracts Ca2+ from OEC) was not changed. The results obtained indicate that the effect of NaCl-washing on the QA ? to QB electron transport is due to PsbP and PsbQ extrinsic proteins extraction, but not due to Ca2+ depletion.  相似文献   

11.
Complexes of the dipeptide phenylalanine–phenylalanine (Phe–Phe) with divalent metal cations (Cu2+, Zn2+, Ca2+ and Ba2+) were studied at the B3LYP and MP2 levels of theory with the basis sets 6-311++G(d,p) and 6-31 + G(d) in the gas phase. The relative energies of these complexes indicated that cation–π bidentate/tridentate conformations are more favourable than other conformations with uncoordinated rings. These findings were confirmed by the calculated values of thermodynamic parameters such as the Gibbs free energy. Natural bond orbital (NBO) analysis was carried out to explore the metal–ligand coordination in Phe–Phe–Cu2+/Zn2+ complexes. Possible orbital transitions, types of orbitals and their occupancies were determined for a range of Phe–Phe–Cu2+/Zn2+ complexes. The charge transfer involved in various orbital transitions was explored by considering the second-order perturbation energy. NBO analysis revealed that the change transfer is stronger when the metal cation uses both the 4s + 4p subshells rather than just its 4p subshell. We also performed molecular dynamics (MD) simulations to check the stability and consistency of the most favourable binding motifs of Cu2+, Zn2+, Ca2+ and Ba2+ with Phe–Phe over time. The structures of the Phe–Phe–Cu2+/Zn2+/Ca2+/Ba2+ complexes obtained using MD simulation were found to be in good agreement with those obtained in the DFT-based calculations.
Graphical Abstract Conformational search on encapsulation of divalent metal cations (Ca2+, Zn2+, Ca2+, Ba2+) by the Phe-Phe dipeptide
  相似文献   

12.
Abiotic stressors such as drought, salinity, and exposure to heavy metals can induce epigenetic changes in plants. In this study, liquid chromatography (RP-HPLC), methylation amplified fragment length polymorphisms (metAFLP), and methylation-sensitive amplification polymorphisms (MSAP) analysis was used to investigate the effects of aluminum (Al) stress on DNA methylation levels in the crop species triticale. RP-HPLC, but not metAFLP or MSAP, revealed significant differences in methylation between Al-tolerant (T) and non-tolerant (NT) triticale lines. The direction of methylation change was dependent on phenotype and organ. Al treatment increased the level of global DNA methylation in roots of T lines by approximately 0.6%, whereas demethylation of approximately 1.0% was observed in NT lines. DNA methylation in leaves was not affected by Al stress. The metAFLP and MSAP approaches identified DNA alterations induced by Al3+ treatment. The metAFLP technique revealed sequence changes in roots of all analyzed triticale lines and few mutations in leaves. MSAP showed that demethylation of CCGG sites reached approximately 3.97% and 3.75% for T and NT lines, respectively, and was more abundant than de novo methylation, which was observed only in two tolerant lines affected by Al stress. Three of the MSAP fragments showed similarity to genes involved in abiotic stress.  相似文献   

13.

Background and aims

The aim of weed control and fertilization in forest plantations was to increase tree growth by reducing competition for available nutrients and water. However, treatments that influence weed biomass can also have significant impacts on soil carbon (C) and nitrogen (N) cycling which can in turn lead to changes in the dynamics of stable C (δ13C) and N (δ15N) isotope compositions in soils and tree foliage.

Methods

We examined the key C and N cycling processes influenced by routine and luxury weed control and fertilization treatments as reflected by soil and foliar δ13C and δ15N and long-term tree growth in an 8-year old F1 hybrid pine (Pinus elliottii x P. caribaea) plantation in southeast Queensland, Australia. Weed control treatments varied by treatment frequency and intensity while fertilization treatments varied by the application of N, phosphorus (P), potassium (K) and micronutrients. Different soil and canopy sampling positions were assessed to determine if sampling position enhanced the relationships among soil N transformations and tree N use, water use efficiency and carbon gain under the early establishment silviculture.

Results

Routine weed control was associated with increased weed biomass returned to the soil, compared with luxury weed control. Soil δ13C increased at the 0–5 cm soil sampling depth in both the inter-planting (IPR) and planting row (PR) as a result of the routine weed control treatments. In addition, soil δ13C was significantly higher as a result of fertilisation treatment in the 0–5 cm soil sampling depth in the PR. Soil δ13C was negatively correlated to soil δ15N at the 0–5 cm soil sampling depth in the IPR. Soil δ15N increased in the 0–5 and 5–10 cm soil sampling depths in the IPR, as a result of more frequent (luxury) weed control. Foliar δ15N and tree water use efficiency (WUE) (as indicated by foliar δ13C) were positively correlated with tree growth at age 8 years. While relationships between δ13C and δ15N in the soil and foliage varied depending on soil sampling depth and position, and with canopy sampling position where there were consistent relationships between soil δ13C (or δ15N) and foliar δ15N.

Conclusions

This study demonstrates how early establishment silviculture has important implications for soil C and N cycling and how soil δ13C and δ15N were consistent with changes in soil C cycling and N transformations as a result of weed control treatments, while foliar δ15N was linked to more rapid N cycling as reflected in the soil δ15N, which increased tree growth and tree WUE (as reflected by foliar δ13C).
  相似文献   

14.
The effect of contrast medium SonoVue® on the electric charge density of blood cells (erythrocytes and thrombocytes) was measured using a microelectrophoretic method. We examined the effect of adsorbed H+ and OH? ions on the surface charge of erythrocytes or thrombocytes. Surface charge density values were determined from electrophoretic mobility measurements of blood cells performed at various pH levels. The interaction between solution ions and the erythrocyte’s or thrombocyte’s surface was described by a four-component equilibrium model. The agreement between the experimental and theoretical charge variation curves of the erythrocytes and thrombocytes was good at pH 2–9. The deviation observed at a higher pH may be caused by disregarding interactions between the functional groups of blood cells.  相似文献   

15.
Among various types of ionizing radiation, the beta emitter radionuclides are involved in many sectors of human activity, such as nuclear medicine, nuclear industries and biomedicine, with a consequently increased risk of accidental, occupational or therapeutic exposure. Despite their recognized importance, there is little information about the effect of beta particles at the cellular level when compared to other types of ionizing radiation. Thus, the objective of the present study was to evaluate the genotoxic and cytotoxic effects of 90Sr/90Y—a pure, highly energetic beta source—on Chinese hamster ovary (CHO) cells and to compare them with data obtained with 60Co. CHO cells irradiated with different doses of 60Co (0.34 Gy min–1) and 90Sr/90Y (0.23 Gy min–1) were processed for analysis of clonogenic death, induction of micronuclei (MN) and interphase death. The survival curves obtained for both types of radiation were fitted by the exponential quadratic model and were found to be similar. Also, the cytogenetic results showed similar frequencies of radio-induced MN between gamma and beta radiations and the MN distribution pattern among cells did not follow the expected Poisson probability pattern. The relative variance values were significantly higher in cells irradiated with 90Sr/90Y than with 60Co in all exposure doses. The irradiated cells showed more necrotic cells 72 h and 96 h after exposure to beta than to gamma radiation. In general, the 90Sr/90Y -radiation was more damaging than 60Co -rays. The data obtained also demonstrated the need to use several parameters for a better estimate of cellular sensitivity to the action of genotoxic agents, which would be important in terms of radiobiology, oncology and therapeutics.  相似文献   

16.
A computational chemistry investigation was undertaken to shed light on the facilitatory role played by Fe3+ and Al3+ cations in the adsorption of anionic As(V) species by humic acids through the formation of so-called cationic bridges. Geometric and energetic parameters were obtained using density functional theory at the B3LYP/6-31G(d,p) level in conjunction with the polarizable continuum model (to account for the influence of bulk water). We found that, despite their similar molecular geometries, the adsorption energies of the As(V) species AsO4 3? and H2AsO4? differ when Fe3+, FeOH2+, Al3+, and AlOH2+ participate in the bridge. We also found that effective adsorption of As(V) species by humic acids strongly depends on whether the considered cationic bridges are tightly coordinated by humic acids at the adsorption sites, as well as on the rigidity of these humic acid adsorption sites.  相似文献   

17.
Studies were performed of the carbon and nitrogen stable isotope (δ13C and δ15N) composition (δ13C and δ15N) of the corals Porites cylindrica and P. lutea (5 years after damaging the colonies by the bleaching events) and of epilithic algae settled onto damaged areas of coral colonies. Coral polyps and three epilithic algal communities (‘red algal turf, green algal turf and red calcified crusts’) were sampled along the boundary between communities of coral polyps and algal colonizers from differently illuminated habitats from 2 to 90% of incident surface photosynthetically active radiation (PAR0). It was found that communities with a predominance of red algae significantly differed from communities with a predominance of green algae in δ13C but not in δ15N values. An influence of habitat irradiance was found only for communities of coral polyps for δ13C and δ15N values: under bright light (70–90% PAR0) polyp tissues of both coral species were significantly enriched in heavy carbon isotopes and insignificantly in nitrogen isotopes (δ13C values difference ~4‰) relative to tissues of corals under lower light 15–50% PAR0. On the basis of these results we assumed that differences in light intensities in the habitat ranging from 15 to 90% PAR0 do not influence on accessibility of the main carbon and nitrogen sources for corals and algae, and exchange by these elements between organisms. We also assumed that the relative enrichment in the heavy carbon isotopes of coral tissues in high light is a result of decreased isotope fractionation (or the absence of fractionation in photosynthesis of their zooxanthellae).  相似文献   

18.
We present a highly sensitive pulse sequence, carbonyl carbon label selective 1H–15N HSQC (CCLS-HSQC) for the detection of signals from 1H–15N units involved in 13C′–15N linkages. The CCLS-HSQC pulse sequence utilizes a modified 15N CT evolution period equal to 1/( ) (∼33 ms) to select for 13C′–15N pairs. By collecting CCLS-HSQC and HNCO data for two proteins (8 kDa ubiquitin and 20 kDa HscB) at various temperatures (5–40°C) in order to vary correlation times, we demonstrate the superiority of the CCLS-HSQC pulse sequence for proteins with long correlation times (i.e. higher molecular weight). We then show that the CCLS-HSQC experiment yields assignments in the case of a 41 kDa protein incorporating pairs of 15N- and 13C′-labeled amino acids, where a TROSY 2D-HN(CO) had failed. Although the approach requires that the 1H–15N HSQC cross peaks be observable, it does not require deuteration of the protein. The method is suitable for larger proteins and is less affected by conformational exchange than HNCO experiments, which require a longer period of transverse 15N magnetization. The method also is tolerant to the partial loss of signal from isotopic dilution (scrambling). This approach will be applicable to families of proteins that have been resistant to NMR structural and dynamic analysis, such as large enzymes, and partially folded or unfolded proteins.  相似文献   

19.
Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1?16 μm, widths of 1?8 mm, and lengths of 5?11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40?1000 kA and current densities of (5–50) × 108 A/cm2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing method with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.  相似文献   

20.
To study the protective effect of mitochondrial ATP-sensitive K+ channel (mitoKATP channel) opener, nicorandil, combined with Na+/Ca2+ exchange blocker KB-R7943 on myocardial ischemia–reperfusion injury in isolated rat hearts; the isolated rat heart was perfused by modified Langendorff device, after 15-min balanced perfusion, 45-min ischemia (about left and right coronary perfusion flow reduced to 5% of the original irrigation flow), and 2-h reperfusion were performed. Forty Wistar rats were randomly divided into four groups: control group, nicorandil group, KB-R7943 group, and the combination of nicorandil and KB-R7943 group. After 45-min ischemia and then 2-h reperfusion, the myocardial infarct size was 34.31% in control group, 26.35% in nicorandil group, 28.74% in KB-R7943 group, and 19.23% in combination of nicorandil and KB-R7943 group. SOD activity in coronary perfusion fluid was the highest in the combination of nicorandil and KB-R7943 group, and MDA content was the lowest. In the combination drug group compared with the control group, myocardial ultrastructural injury was significantly reduced. The combination of nicorandil and KB-R7943 significantly reduced myocardial infarct size, significantly reduced myocardial ultrastructural damage, could increase coronary perfusion fluid SOD activity, and reduced MDA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号