首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cross-hybridization is the tendency for chains of nucleic acids to bind to other chains of nucleic acids that have similar but not identical sequences. This has the potential to make the interpretation of microarray experiments difficult since intensity at a spot on the array does not simply depend on the quantity of target in the sample. We propose a method for evaluating the extent of cross-hybridization in oligonucleotide arrays for data arising from a typical microarray experiment. We show that the level of cross-hybridization can be quite substantial. We argue that this makes the interpretation of the difference calls provided by MAS 5.0 difficult.  相似文献   

2.
Transformation and normalization of oligonucleotide microarray data   总被引:3,自引:0,他引:3  
MOTIVATION: Most methods of analyzing microarray data or doing power calculations have an underlying assumption of constant variance across all levels of gene expression. The most common transformation, the logarithm, results in data that have constant variance at high levels but not at low levels. Rocke and Durbin showed that data from spotted arrays fit a two-component model and Durbin, Hardin, Hawkins, and Rocke, Huber et al. and Munson provided a transformation that stabilizes the variance as well as symmetrizes and normalizes the error structure. We wish to evaluate the applicability of this transformation to the error structure of GeneChip microarrays. RESULTS: We demonstrate in an example study a simple way to use the two-component model of Rocke and Durbin and the data transformation of Durbin, Hardin, Hawkins and Rocke, Huber et al. and Munson on Affymetrix GeneChip data. In addition we provide a method for normalization of Affymetrix GeneChips simultaneous with the determination of the transformation, producing a data set without chip or slide effects but with constant variance and with symmetric errors. This transformation/normalization process can be thought of as a machine calibration in that it requires a few biologically constant replicates of one sample to determine the constant needed to specify the transformation and normalize. It is hypothesized that this constant needs to be found only once for a given technology in a lab, perhaps with periodic updates. It does not require extensive replication in each study. Furthermore, the variance of the transformed pilot data can be used to do power calculations using standard power analysis programs. AVAILABILITY: SPLUS code for the transformation/normalization for four replicates is available from the first author upon request. A program written in C is available from the last author.  相似文献   

3.
4.
Design considerations for array CGH to oligonucleotide arrays.   总被引:3,自引:0,他引:3  
BACKGROUND: Representational oligonucleotide microarray analysis has been developed for detection of single nucleotide polymorphisms and/or for genome copy number changes. In this process, the intensity of hybridization to oligonucleotides arrays is increased by hybridizing a polymerase chain reaction (PCR)-amplified representation of reduced genomic complexity. However, hybridization to some oligonucleotides is not sufficiently high to allow precise analysis of that portion of the genome. METHODS: In an effort to identify aspects of oligonucleotide hybridization affecting signal intensity, we explored the importance of the PCR product strand to which each oligonucleotide is homologous and the sequence of the array oligonucleotides. We accomplished this by hybridizing multiple PCR-amplified products to oligonucleotide arrays carrying two sense and two antisense 50-mer oligonucleotides for each PCR amplicon. RESULTS: In some cases, hybridization intensity depended more strongly on the PCR amplicon strand (i.e., sense vs. antisense) than on the detection oligonucleotide sequence. In other cases, the oligonucleotide sequence seemed to dominate. CONCLUSION: Oligonucleotide arrays for analysis of DNA copy number or for single nucleotide polymorphism content should be designed to carry probes to sense and antisense strands of each PCR amplicon to ensure sufficient hybridization and signal intensity.  相似文献   

5.
6.
We have studied the effects of structure on nucleic acid heteroduplex formation by analyzing hybridization of tRNAphe to a complete set of complementary oligonucleotides, ranging from single nucleotides to dodecanucleotides. The analysis points to features in tRNA that determine heteroduplex yield. All heteroduplexes that give high yield include both double-stranded stems as well as single-stranded regions. Bases in the single-stranded regions are stacked onto the stems, and heteroduplexes terminate at potential interfaces for coaxial stacking. Heteroduplex formation is disfavored by sharp turns or a lack of helical order in single-stranded regions, competition from bases displaced from a stem, and stable tertiary interactions. The study is relevant to duplex formation on oligonucleotide microarrays and to antisense technologies.  相似文献   

7.
We have investigated the use of spacer molecules to reduce steric interference of the support on the hybridisation behaviour of immobilised oligonucleotides. These spacers are built up from a variety of monomeric units, using phosphoramidite chemistry, by condensation onto an amine-functionalised polypropylene support. The optimal spacer length was determined to be at least 40 atoms in length, giving up to 150-fold increase in the yield of hybridisation. The effects of different charged groups in the spacer were also examined, and it was shown that both positively and negatively charged groups in the spacer diminish the yield of hybridisation. Steric hindrance in hybridisation can also be a problem if the oligonucleotides attached to the support are too close to each other. Surface coverage was varied using a combination of cleavable and stable linkers, giving the highest hybridisation yields for surfaces containing approximately 50% of the maximum concentration of oligonucleotides.  相似文献   

8.
High-density DNA probe arrays provide a massively parallel approach to nucleic acid sequence analysis that is transforming gene-based biomedical research and diagnostics. Light-directed combinatorial oligonucleotide synthesis has enabled the large-scale production of GeneChip probe arrays which contain several hundred of thousand oligonucleotide sequences on glass "chips" about one cm2 in size. Due to their very high information content, GeneChip probe arrays are finding widespread use in the hybridization-based detection and analysis of mutations and polymorphisms ("genotyping"), and in a wide range of gene expression studies. The manufacturing process integrates solid-phase photochemical oligonucleotide synthesis with lithographic techniques adapted from the microelectronics industry. The present-generation methodology employs MeNPOC photo-activatable nucleoside monomers with proximity photolithography, and is currently capable of printing individual 10 microns 2 probe features at a density of 10(6) probes/cm2.  相似文献   

9.
10.
11.

Background

Normalization is an important step for microarray data analysis to minimize biological and technical variations. Choosing a suitable approach can be critical. The default method in GeneChip expression microarray uses a constant factor, the scaling factor (SF), for every gene on an array. The SF is obtained from a trimmed average signal of the array after excluding the 2% of the probe sets with the highest and the lowest values.

Results

Among the 76 U34A GeneChip experiments, the total signals on each array showed 25.8% variations in terms of the coefficient of variation, although all microarrays were hybridized with the same amount of biotin-labeled cRNA. The 2% of the probe sets with the highest signals that were normally excluded from SF calculation accounted for 34% to 54% of the total signals (40.7% ± 4.4%, mean ± sd). In comparison with normalization factors obtained from the median signal or from the mean of the log transformed signal, SF showed the greatest variation. The normalization factors obtained from log transformed signals showed least variation.

Conclusions

Eliminating 40% of the signal data during SF calculation failed to show any benefit. Normalization factors obtained with log transformed signals performed the best. Thus, it is suggested to use the mean of the logarithm transformed data for normalization, rather than the arithmetic mean of signals in GeneChip gene expression microarrays.
  相似文献   

12.

Background  

Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome.  相似文献   

13.
We present a new protocol for the preparation of nucleic acids for microarray hybridization. DNA is fragmented quantitatively and reproducibly by using a hydroxyl radical-based reaction, which is initiated by hydrogen peroxide, iron(II)-EDTA and ascorbic acid. Following fragmentation, the nucleic acid fragments are densely biotinylated using a biotinylated psoralen analog plus UVA light and hybridized on microarrays. This non-enzymatic protocol circumvents several practical difficulties associated with DNA preparation for microarrays: the lack of reproducible fragmentation patterns associated with enzymatic methods; the large amount of labeled nucleic acids required by some array designs, which is often combined with a limited amount of starting material; and the high cost associated with currently used biotinylation methods. The method is applicable to any form of nucleic acid, but is particularly useful when applying double-stranded DNA on oligonucleotide arrays. Validation of this protocol is demonstrated by hybridizing PCR products with oligonucleotide-coated microspheres and PCR amplified cDNA with Affymetrix Cancer GeneChip microarrays.  相似文献   

14.
In sequencing-by-hybridization methods, the nucleotide sequence of a nucleic acid is reconstructed by overlapping oligonucleotides capable of hybridizing with the nucleic acid. In their present form, the methods are hardly suitable for sequencing of long nucleic acid molecules because of the occurrence of non-unique overlaps between the oligonucleotides, and similarly to the conventional sequencing methods, it is necessary to obtain an individual molecule. In the method described here, most ambiguities in reconstruction of a sequence from the constituent oligonucleotides are eliminated by preparing on oligonucleotide arrays and separate surveying of the nucleic acid nested partials. This enables longer nucleic acids to be sequenced, and results in a high redundancy of the input data allowing most hybridization errors to be eliminated by algorithmic means. Furthermore, large pools of nucleic acid strands can be sequenced directly, without isolating individual strands.  相似文献   

15.
16.
The hybridization kinetics of oligonucleotide targets to oligonucleotide probe arrays synthesized using photolithographic fabrication methods developed by Affymetrix have been measured. Values for the fundamental adsorption parameters, k(a), k(d), and K, were determined at both room temperature and 45 degrees C by monitoring the hybridization of fluorescently labeled targets to the array. The values for these parameters and the adsorbed target density (相似文献   

17.
A rapid method for the construction of oligonucleotide arrays   总被引:2,自引:0,他引:2  
A simple method has been devised to construct oligonucleotide array on a variety of surfaces using commonly available reagents and chemistry with good efficiency and accuracy. The method involves the generation of hydroxyl functionalities on glass, polypropylene, polyethylene, and commonly used surfaces for construction of oligonucleotide arrays followed by their activation with trifluoroethanesulfonyl chloride (tresyl chloride). The activated surface in the subsequent reaction is used to covalently immobilize oligonucleotides in regioselective fashion to create an oligonucleotide array. The surface bound tresyl sulfonate esters allow the immobilization of oligonucleotides specifically via their 3'- or 5'-end having mercaptohexyl- or aminohexyl functionalities. The constructed oligonucleotide arrays were successfully used to analyze oligonucleotides by hybridization technique.  相似文献   

18.
Oligonucleotide microarrays are based on the hybridization of labeled mRNA molecules to short length oligonucleotide probes on a glass surface. Two effects have been shown to affect the raw data: the sequence dependence of the probe hybridization properties and the chemical saturation resulting from surface adsorption processes. We address both issues simultaneously using a physically motivated hybridization model. Based on publicly available calibration data sets, we show that Langmuir adsorption accurately describes GeneChip hybridization, with model parameters that we predict from the sequence composition of the probes. Because these parameters have physical units, we are able to estimate absolute mRNA concentrations in picomolar. Additionally, by accounting for chemical saturation, we substantially reduce the compressive bias of differential expression estimates that normally occurs toward high concentrations.  相似文献   

19.
A novel, cartridge-based procedure for the efficient and irreversible detritylation of oligonucleotides is reported. This method, combined with a process for the elimination of depurinated fragments produces, in a highly parallel fashion, oligonucleotides with better purity than those traditionally obtained using reversed-phase high-performance liquid chromotography purification. Our combined detritylation and purification methodology compares favorably with commercial cartridge-based purification systems. The benefits of working with pure oligonucleotides, with regard to higher signal and better signal linearity, are shown in array-based hybridization experiments.  相似文献   

20.
Listeria monocytogenes is a pathogenic intracellular microorganism whose infection induces pleiotropic biological changes associated with host cell gene expression regulation. Here we define the gene expression profiles of the human promyelocytic THP1 cell line before and after L. monocytogenes infection. Gene expression was measured on a large scale via oligonucleotide microarrays with probe sets corresponding to 6,800 human genes. We assessed and discussed the reproducibility of the hybridization signatures. In addition to oligonucleotide arrays, we also performed the large scale gene expression measurement with two high-density membranes, assaying for 588 and 18,376 human genes, respectively. This work allowed the reproducible identification of 74 up-regulated RNAs and 23 down-regulated RNAs as a consequence of L. monocytogenes infection of THP1. The reliability of these data was reinforced by performing independent infections. Some of these detected RNAs were consistent with previous results, while some newly identified RNAs encode gene products that may play key roles in L. monocytogenes infection. These findings will undoubtedly enhance the understanding of L. monocytogenes molecular physiology and may help identify new therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号