首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in cancer immunotherapy have renewed interest in oncolytic viruses (OVs) as a synergistic platform for the development of novel antitumor strategies. Cancer cells adopt multiple mechanisms to evade and suppress antitumor immune responses, essentially establishing a non-immunogenic (‘cold’) tumor microenvironment (TME), with poor T-cell infiltration and low mutational burden. Limitations to the efficacy of immunotherapy still exist, especially for a variety of solid tumors, where new approaches are necessary to overcome physical barriers in the TME and to mitigate adverse effects associated with current immunotherapeutics. OVs offer an attractive alternative by inducing direct oncolysis, immunogenic cell death, and immune stimulation. These multimodal mechanisms make OVs well suited to reprogram non-immunogenic tumors and TME into inflamed, immunogenic (‘hot’) tumors; enhanced release of tumor antigens by dying cancer cells is expected to augment T-cell infiltration, thereby eliciting potent antitumor immunity. Advances in virus engineering and understanding of tumor biology have allowed the optimization of OV-tumor selectivity, oncolytic potency, and immune stimulation. However, OV antitumor activity is likely to achieve its greatest potential as part of combinatorial strategies with other immune or cancer therapeutics.  相似文献   

2.
Lung cancer is one of the malignant tumors that seriously threaten human health worldwide, while the covid-19 virus has become people's nightmare after the coronavirus pandemic. There are too many similarities between cancer cells and viruses, one of the most significant is that both of them are our enemies. The strategy to take the advantage of the virus to beat cancer cells is called Oncolytic virotherapy. When immunotherapy represented by immune checkpoint inhibitors has made remarkable breakthroughs in the clinical practice of lung cancer, the induction of antitumor immunity from immune cells gradually becomes a rapidly developing and promising strategy of cancer therapy. Oncolytic virotherapy is based on the same mechanisms that selectively kill tumor cells and induce systemic anti-tumor immunity, but still has a long way to go before it becomes a standard treatment for lung cancer. This article provides a comprehensive review of the latest progress in oncolytic virotherapy for lung cancer, including the specific mechanism of oncolytic virus therapy and the main types of oncolytic viruses, and the combination of oncolytic virotherapy and existing standard treatments. It aims to provide new insights and ideas on oncolytic virotherapy for lung cancer.  相似文献   

3.
Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.  相似文献   

4.
The antitumor and antimetastatic activity of dacarbazine (DTIC) alone or in combination with cyclophosphamide (CY) was tested in C57BL/6 mice bearing Lewis lung carcinoma (3LL). Treatment with both agents significantly reduced tumor growth and the number of metastases. These effects were associated with marked changes of the biochemical and immunological properties of drug-treated 3LL cells, i.e. (a) reduction of α6 integrin expression, (b) increased susceptibility to natural immunity in vivo, as measured in terms of rapid clearance from mouse lungs of prelabeled 3LL cells injected i.v. and (c) increased immunogenicity, as assessed by T-cell-mediated immune responses (i.e. graft rejection by intact syngeneic mice, and frequency of specific CTL precursors recognizing DTIC/CY-treated cancer cells). The immunotherapeutic advantage afforded by increased immunosensitivity and immunogenicity of 3LL cells exposed to DTIC+CY appears to be markedly reduced in vivo by the profound immunodepressive effects of these drugs. Within this context, addition of interleukin-2 was found to increase the antitumor and antimetastatic activity of this chemotherapeutic regimen. The present study shows, for the first time in a solid tumor model, that a biological response modifier increases the antitumor efficacy of drugs that are able to affect the immunological properties of cancer cells.  相似文献   

5.
Oncolytic herpes simplex virus 1 (HSV-1) viruses armed with immunomodulatory transgenes have shown potential for enhanced antitumor therapy by overcoming tumor-based immune suppression and promoting antitumor effector cell development. Previously, we reported that the new oncolytic HSV-1 virus, OncSyn (OS), engineered to fuse tumor cells, prevented tumor growth and metastasis to distal organs in the 4T1/BALB/c immunocompetent breast cancer mouse model, suggesting the elicitation of antitumor immune responses (Israyelyan et al., Hum. Gen. Ther. 18:5, 2007, and Israyelyan et al., Virol. J. 5:68, 2008). The OSV virus was constructed by deleting the OS viral host shutoff gene (vhs; UL41) to further attenuate the virus and permit dendritic cell activation and antigen presentation. Subsequently, the OSVP virus was constructed by inserting into the OSV viral genome a murine 15-prostaglandin dehydrogenase (15-PGDH) expression cassette, designed to constitutively express 15-PGDH upon infection. 15-PGDH is a tumor suppressor protein and the primary enzyme responsible for the degradation of prostaglandin E2 (PGE2), which is known to promote tumor development. OSVP, OSV, and OS treatment of 4T1 tumors in BALB/c mice effectively reduced primary tumor growth and inhibited metastatic development of secondary tumors. OSVP was able to significantly inhibit the development and accumulation of 4T1 metastatic tumor cells in the lungs of treated mice. Ex vivo analysis of immune cells following treatment showed increased inflammatory cytokine production and the presence of mature dendritic cells for the OSVP, OSV, and OS viruses. A statistically significant decrease in splenic myeloid-derived suppressor cells (MDSC) was observed only for OSVP-treated mice. These results show that intratumoral oncolytic herpes is highly immunogenic and suggest that 15-PGDH expression by OSVP enhanced the antitumor immune response initiated by viral infection of primary tumor cells, leading to reduced development of pulmonary metastases. The availability of the OSVP genome as a bacterial artificial chromosome allows for the rapid insertion of additional immunomodulatory genes that could further assist in the induction of potent antitumor immune responses against primary and metastatic tumors.  相似文献   

6.
The antitumor and antimetastatic activity of dacarbazine (DTIC) alone or in combination with cyclophosphamide (CY) was tested in C57BL/6 mice bearing Lewis lung carcinoma (3LL). Treatment with both agents significantly reduced tumor growth and the number of metastases. These effects were associated with marked changes of the biochemical and immunological properties of drug-treated 3LL cells, i.e. (a) reduction of 6 integrin expression, (b) increased susceptibility to natural immunity in vivo, as measured in terms of rapid clearance from mouse lungs of prelabeled 3LL cells injected i.v. and (c) increased immunogenicity, as assessed by T-cell-mediated immune responses (i.e. graft rejection by intact syngeneic mice, and frequency of specific CTL precursors recognizing DTIC/CY-treated cancer cells). The immunotherapeutic advantage afforded by increased immunosensitivity and immunogenicity of 3LL cells exposed to DTIC+CY appears to be markedly reduced in vivo by the profound immunodepressive effects of these drugs. Within this context, addition of interleukin-2 was found to increase the antitumor and antimetastatic activity of this chemotherapeutic regimen. The present study shows, for the first time in a solid tumor model, that a biological response modifier increases the antitumor efficacy of drugs that are able to affect the immunological properties of cancer cells.  相似文献   

7.
In many common cancers, dissemination of secondary tumors via the lymph nodes poses the most significant threat to the affected individual. Metastatic cells often reach the lymph nodes by mimicking the molecular mechanisms used by hematopoietic cells to traffic to peripheral lymphoid organs. Therefore, we exploited naive T cell trafficking in order to chaperone an oncolytic virus to lymphoid organs harboring metastatic cells. Metastatic burden was initially reduced by viral oncolysis and was then eradicated, as tumor cell killing in the lymph node and spleen generated protective antitumor immunity. Lymph node purging of tumor cells was possible even in virus-immune mice. Adoptive transfer of normal T cells loaded with oncolytic virus into individuals with cancer would be technically easy to implement both to reduce the distribution of metastases and to vaccinate the affected individual in situ against micrometastatic disease. As such, this adoptive transfer could have a great therapeutic impact, in the adjuvant setting, on many different cancer types.  相似文献   

8.
The study of measles virus (MeV) as a cancer immunotherapeutic was prompted by clinical observations of leukemia and lymphoma regressions in patients following measles virus infection in the 1970s and 1980s. Since then, numerous preclinical studies have confirmed the oncolytic activity of MeV vaccine strains as well as their potential to promote long-lasting tumor-specific immune responses. Early clinical data indicate that some of these effects may translate to the treatment of cancer patients. In this review, we provide a structured summary of current evidence for the anti-tumor immune activity of oncolytic MeV. We start with an overview of MeV oncolysis and MeV-induced immunogenic cell death. Next, we relate findings on MeV-mediated activation of antigen-presenting cells, T cell priming and effector mechanisms to the cancer immunity cycle. We discuss additional factors in the tumor microenvironment which are modulated by MeV treatment as well as the role of anti-viral immunity. Based on these findings, we highlight avenues for rational enhancement of oncolytic MeV immunotherapy by vector engineering. We further point to advantages and drawbacks of experimental models and propose areas warranting promising research. Lastly, we review the available immunomonitoring data from several Phase I clinical trials. While this review presents data for MeV, the concepts and principles introduced herein apply to other oncolytic viruses, providing a framework to assess novel cancer immunotherapies.  相似文献   

9.
Induction of antitumor immunity by indomethacin   总被引:4,自引:0,他引:4  
Irradiated tumor cells given, together with indomethacin, to syngeneic mice induced an antitumor response and conferred protection against a challenge of a lethal dose of murine mammary (4T1) and lung (3LL) carcinoma cells. Continuous administration of indomethacin was crucial throughout the entire period of immunization and challenge, as no protection was achieved when the drug was given during only one of these procedures. Antitumor immunity was long-lasting and, when tested in the 4T1 model, 48% of mice were resistant to a second challenge of lethal tumor cells. Tumor-free immune mice that were given indomethacin for more than 300 days remained healthy with normal white blood cell counts and normal spleen size. Cells isolated from immune mice were able to kill tumor cells in culture after in vitro activation by interleukin-2, in a manner similar to cells from naive normal control mice. In addition, the mitogenic response of their T cells was as high as that of the control naive mice. While indomethacin was able to induce antitumor immunity to 4T1 and 3LL murine carcinoma cells, both of which contain a high concentration of endogenic prostaglandin E2 (PGE2), no such immunity was achieved to murine tumor cells with a low concentration of endogenic PGE2. These results suggest a correlation between PGE2 concentration and the ability of indomethacin to induce antitumor immunity. We therefore suggest that an immunotherapy protocol with long-term dispensation of a tolerable dose of an immunomodulator, given together with irradiated autologous tumor cells, may stimulate antitumor responses to tumors containing high concentrations of endogenic PGE2. Received: 12 August 1999 / Accepted: 21 September 1999  相似文献   

10.
溶瘤病毒(oncolytic virus,OVs)历经百年发展,应用于当前最具潜力的肿瘤免疫疗法。它主要是天然的或基因修饰的DNA病毒和RNA病毒。近年来随着基因工程技术的飞跃发展,经基因改造的溶瘤病毒在肿瘤治疗领域取得很大进展,很多不同类型的病毒(包括单纯疱疹病毒、腺病毒、痘病毒、麻疹病毒和呼肠孤病毒等)正处于临床前研究、临床试验阶段或已批准上市,显示了良好的安全性和临床疗效。普遍认为溶瘤病毒靶向杀伤肿瘤细胞是通过选择性在肿瘤细胞内自我复制,最终裂解肿瘤细胞,同时可激发机体的免疫应答反应,进而增强抗肿瘤免疫效果,靶向杀伤肿瘤细胞而对正常细胞无明显影响。运用基因重组技术将溶瘤病毒与免疫检查点相结合以及肿瘤免疫联合疗法的兴起和不断进步,使溶瘤病毒的应用更加广泛,但仍存在病毒靶向性、安全性、给药途径等瓶颈问题。本文综述了溶瘤病毒的发展史、病毒分类、不同类型溶瘤病毒产品的临床研究进展、溶瘤病毒靶向杀伤肿瘤的免疫学机制及未来发展面临的挑战与展望等。  相似文献   

11.
The history of immunizing animals with fetal tissues to generate an antitumor response dates back a century ago. Subsequent reports supported the idea that vaccination with embryonic materials could generate cancer-specific immunity and protect animals from transplantable and chemically induced tumors. In our study, we found C57 BL/6 mice vaccinated with embryonic stem cells (ESCs) received obvious antitumor immunity, which protected them from the formation and development of lung cancer. Furthermore, we investigated the antitumor effects of administration of ESCs in mice with minor and/or heavy tumor load. The tumor growth was monitored, the proliferation of lymphocytes and secretion of cytokines were examined, and finally the tissue sections were approached by immunohistochemical and apoptosis staining. The results suggested that mice injected with ESCs received obvious tumor inhibition and retardation due to significant lymphocyte proliferation and cytokine secretion, which help to rebuild the host’s immunity against cancer to some extent and comprise the main part of antitumor immunity. Moreover, mice with minor tumor load received stronger antitumor effect compared with mice with heavy tumor load, may be due to relatively intact immune system. Thus, besides their function as prophylactic vaccines, administration of ESCs could be a potential treatment for cancer, which obviously prevent and control the proliferation and development of malignant tumors.  相似文献   

12.
Oncolytic virotherapy is a promising biological approach to cancer treatment that contributes to tumor eradication via immune- and non-immune-mediated mechanisms. One of the remaining challenges for these experimental therapies is the necessity to develop a durable adaptive immune response against the tumor. Vesicular stomatitis virus (VSV) is a prototypical oncolytic virus (OV) that exemplifies the multiple mechanisms of oncolysis, including direct cell lysis, cellular hypoxia resulting from the shutdown of tumor vasculature, and inflammatory cytokine release. Despite these properties, the generation of sustained antitumor immunity is observed only when VSV is engineered to express a tumor antigen directly. In the present study, we sought to increase the number of tumor-associated dendritic cells (DC) in vivo and tumor antigen presentation by combining VSV treatment with recombinant Fms-like tyrosine kinase 3 ligand (rFlt3L), a growth factor promoting the differentiation and proliferation of DC. The combination of VSV oncolysis and rFLt3L improved animal survival in two different tumor models, i.e., VSV-resistant B16 melanoma and VSV-sensitive E.G7 T lymphoma; however, increased survival was independent of the adaptive CD8 T cell response. Tumor-associated DC were actively infected by VSV in vivo, which reduced their viability and prevented their migration to the draining lymph nodes to prime a tumor-specific CD8 T cell response. These results demonstrate that VSV interferes with tumor DC functions and blocks tumor antigen presentation.  相似文献   

13.
Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In this study, we analyzed for the first time the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 in two human hepatocellular carcinoma cell lines HuH7 and PLC/PRF/5 (PLC) in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 efficiently colonized, replicated in, and did lyse these cancer cells in culture. Experiments with HuH7 and PLC xenografts have revealed that a single intravenous injection (i.v.) of mice with GLV-1h68 resulted in a significant reduction of primary tumor sizes compared to uninjected controls. In addition, replication of GLV-1h68 in tumor cells led to strong inflammatory and oncolytic effects resulting in intense infiltration of MHC class II-positive cells like neutrophils, macrophages, B cells and dendritic cells and in up-regulation of 13 pro-inflammatory cytokines. Furthermore, GLV-1h68 infection of PLC tumors inhibited the formation of hemorrhagic structures which occur naturally in PLC tumors. Interestingly, we found a strongly reduced vascular density in infected PLC tumors only, but not in the non-hemorrhagic HuH7 tumor model. These data demonstrate that the GLV-1h68 vaccinia virus may have an enormous potential for treatment of human hepatocellular carcinoma in man.  相似文献   

14.
Daily treatment of mice with fms-like tyrosine kinase 3 ligand (Flt3L) leads to a significant increase in the number of dendritic cells and induces antitumor immunity. Here, we show that Flt3L and CD40 ligand (CD40L) synergize in the generation of immune responses against two poorly immunogenic tumors, leading to complete tumor rejection in a high proportion of mice. Rechallenge of the Flt3L + CD40L-treated mice with the immunizing tumor resulted in complete inhibition of tumor growth, indicating that these animals had developed long-lasting antitumor immunity. In addition, we demonstrate that endogenous CD40L plays a critical role in antitumor immunity, since blockade of CD40-CD40L interactions in vivo prevents the generation of antitumor immunity in therapeutic and vaccination protocols. Dendritic cells generated in mice treated with Flt3L alone or in combination with CD40L were equally potent in stimulating allogeneic T cells and expressed similar levels of MHC class II, CD80, and CD86. However, mice treated with Flt3L + CD40L had significantly more dendritic cells than mice treated with either of the cytokines alone, suggesting that CD40L promotes the proliferation and/or survival of dendritic cells generated by Flt3L treatment. Dendritic cells generated in this manner are likely to be involved in the priming of antitumor immune responses.  相似文献   

15.
Reversing the highly immunosuppressive tumor microenvironment (TME) is essential to achieve long-term efficacy with cancer immunotherapy. Despite the impressive clinical response to checkpoint blockade in multiple types of cancer, only a minority of patients benefit from this approach. Here, we report that the oncolytic virus M1 induces immunogenic tumor cell death and subsequently restores the ability of dendritic cells to prime antitumor T cells. Intravenous injection of M1 disrupts immune tolerance in the privileged TME, reprogramming immune-silent (cold) tumors into immune-inflamed (hot) tumors. M1 elicits potent CD8+ T cell-dependent therapeutic effects and establishes long-term antitumor immune memory in poorly immunogenic tumor models. Pretreatment with M1 sensitizes refractory tumors to subsequent checkpoint blockade by boosting T-cell recruitment and upregulating the expression of PD-L1. These findings reveal the antitumor immunological mechanism of the M1 virus and indicated that oncolytic viruses are ideal cotreatments for checkpoint blockade immunotherapy.Subject terms: Cancer microenvironment, Targeted therapies  相似文献   

16.
Cytokine immunogene therapy is a promising strategy for cancer treatment. Interleukin (IL)-12 boosts potent antitumor immunity by inducing T helper 1 cell differentiation and stimulating cytotoxic T lymphocyte and natural killer cell cytotoxicity. IL-23 has been proposed to have similar but not overlapping functions with IL-12 in inducing Th1 cell differentiation and antitumor immunity. However, the therapeutic effects of intratumoral co-expression of IL-12 and IL-23 in a cancer model have yet to be investigated. Therefore, we investigated for the first time an effective cancer immunogene therapy of syngeneic tumors via intratumoral inoculation of oncolytic adenovirus co-expressing IL-23 and p35, RdB/IL23/p35. Intratumoral administration of RdB/IL23/p35 elicited strong antitumor effects and increased survival in a murine B16-F10 syngeneic tumor model. The levels of IL-12, IL-23, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) were elevated in RdB/IL23/p35-treated tumors. Moreover, the proportion of regulatory T cells was markedly decreased in mice treated with RdB/IL23/p35. Consistent with these data, mice injected with RdB/IL23/p35 showed massive infiltration of CD4+ and CD8+ T cells into the tumor as well as enhanced induction of tumor-specific immunity. Importantly, therapeutic mechanism of antitumor immunity mediated by RdB/IL23/p35 is associated with the generation and recruitment of IFN-γ- and TNF-α-co-producing T cells in tumor microenvironment. These results provide a new insight into therapeutic mechanisms of IL-12 plus IL-23 and provide a potential clinical cancer immunotherapeutic agent for improved antitumor immunity.  相似文献   

17.
《Translational oncology》2020,13(7):100782
Oncolytic viruses have demonstrated efficacy in numerous tumor models including non-small cell lung cancer (NSCLC). One limitation of viral therapy for metastatic lung cancer is that systemic administration can be hindered by complement and antiviral immunity. Thus, we investigated whether ex vivo-infected blood outgrowth endothelial cells (BOECs) could be used to deliver VSV-IFNβ in preclinical models of NSCLC. BOECs were obtained from human donors or C57/Bl6 mice. VSV was engineered to produce GFP or IFNβ. Human and murine BOECs could be infected by VSV-GFP and VSV-IFNβ. Infected BOECs resulted in killing of NSCLC cells in vitro and shielded VSV-IFNβ from antibody neutralization. Mouse BOECs localized to lungs of mice bearing syngeneic LM2 lung tumors, and infected murine BOECs reduced tumor burden in this model. In an immune-deficient A549 xenograft model, mice treated with VSV-IFNβ-infected human BOECs exhibited superior antitumor activity and survival of mice (n = 10, P < .05 compared to VSV-IFNβ alone). We conclude that BOECs can be used as a carrier for delivery of oncolytic VSV-IFNβ. This may be an effective strategy for clinical translation of oncolytic virotherapy for patients with metastatic NSCLC.  相似文献   

18.
Lin Y  Xiong S  Zhang L  Zhang Y  Cai Y  Xu L  Chu Y 《DNA and cell biology》2007,26(12):863-872
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a powerful immune-stimulating factor that helps to generate a systemic, strong, and long-lasting immune response. However, whether the transduction of GM-CSF to tumor cell results in tumor regression and optimizes local immune microenvironment remains to be investigated. In this study, using an experimental murine tumor model, we demonstrated that the in vivo growth of 3LL tumor cells modified with the GM-CSF gene (3LL-GM) was inhibited even when the tumor diameter was over 7 mm (big tumor), and mice inoculated with GM-CSF gene-modified 3LL cells survived over 90 days, whereas mice inoculated with control parental 3LL cells and 3LL cells transduced with control vector all succumbed to the tumor by day 17 after tumor inoculation. Further analysis showed that targeted expression of GM-CSF in 3LL tumor cells markedly enhanced the systemic antitumor effect, including specific lymphocytes proliferation, cytotoxicity against 3LL tumor, and increased production of IFN-gamma. GM-CSF gene-modified 3LL cells significantly protected the mice from the parental 3LL tumor challenge. More importantly, the percentage of dendritic cells (DCs) in tumor site was greatly increased and the DCs differentiated into CD11c(+)CD8alpha(+) cells, which were reported to be able to benefit the induction of CD8(+) cytotoxic T lymphocytes (CTLs) that contribute to tumor regression. Our research indicated that GM-CSF could optimize the immune microenvironment in the tumor site, which provides a potent approach for immunotherapy of tumors.  相似文献   

19.
BackgroundTraditionally, vesicular stomatitis virus (VSV) and other oncolytic viruses (OVs) are thought to kill tumors by inducing apoptosis. However, cell apoptosis leads to immune quiescence, which is incompatible with the ability of OVs to activate the antitumor immune microenvironment. Thus, studying OVs-mediated oncolytic mechanisms is of great importance for the clinical application of OVs.MethodsWe examined the pyroptosis in tumor cells and tissues by morphological observation, Lactate Dehydrogenase (LDH) assay, frozen section observation, and western-blotting techniques. The critical role of GSDME in VSV-induced pyroptosis was confirmed by CRISPR/Cas9 technique. VSV virotherapy-recruited cytotoxic lymphocytes in the tumors were examined by flow cytometry assay. VSV-activated antitumor immunity was further enhanced by the co-administration with anti-PD-1 antibody.ResultsHere, we observed that VSV was able to trigger tumor pyroptosis through Gasdermin E (GSDME) in tumor cells, human tumor samples, and tumor-bearing mouse models. Importantly, the effectiveness of VSV-based virotherapy is highly dependent on GSDME, as depletion of GSDME not only reverses VSV-induced tumor-suppressive effects but also diminishes the ability of VSV to activate antitumor immunity. Notably, VSV treatment makes immunologically ‘cold’ tumors more sensitive to checkpoint blockade.ConclusionsOncolytic VSV induces tumor cell pyroptosis by activating GSDME. GSDME is critical in recruiting cytotoxic T lymphocytes in the context of VSV therapy, which can switch immunologically ‘cold’ tumors into ‘hot’ and enhance immune checkpoint therapy efficacy.  相似文献   

20.
Inflammatory cytokines modulate immune responses in the tumor microenvironment during progression/metastasis. In this study, we have assessed the role of IL-1 and IL-17 in the control of antitumor immunity versus progression in a model of experimental lung metastasis, using 3LL and B16 epithelial tumor cells. The absence of IL-1 signaling or its excess in the lung microenvironment (in IL-1β and IL-1R antagonist knockout [KO] mice, respectively) resulted in a poor prognosis and reduced T cell activity, compared with WT mice. In IL-1β KO mice, enhanced T regulatory cell development/function, due to a favorable in situ cytokine network and impairment in APC maturation, resulted in suppressed antitumor immunity, whereas in IL-1R antagonist KO mice, enhanced accumulation and activity of myeloid-derived suppressor cells were found. Reduced tumor progression along with improved T cell function was found in IL-17 KO mice, compared with WT mice. In the microenvironment of lung tumors, IL-1 induces IL-17 through recruitment of γ/δ T cells and their activation for IL-17 production, with no involvement of Th17 cells. These interactions were specific to the microenvironment of lung tumors, as in intrafootpad tumors in IL-1/IL-17 KO mice, different patterns of invasiveness were observed and no IL-17 could be locally detected. The results highlight the critical and unique role of IL-1, and cytokines induced by it such as IL-17, in determining the balance between inflammation and antitumor immunity in specific tumor microenvironments. Also, we suggest that intervention in IL-1/IL-17 production could be therapeutically used to tilt this balance toward enhanced antitumor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号