首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Mus dunni cell line has been developed that is permissive for all four classes of murine leukemia viruses (MuLV): ecotropic, amphotropic, xenotropic, and mink cell focus-forming viruses. The M. dunni cells contain fewer MuLV-related sequences than do feral or domestic mouse, rat, or mink cells. Infection of the line by ecotropic MuLV induces a distinct cytopathic effect, and the cells can be readily transfected by MuLV DNA. The M. dunni line has been used to isolate an endogenous MuLV from the SC-1 feral mouse cell line.  相似文献   

2.
A new class of murine leukemia viruses, isolated from wild Mus musculus trapped in California, is described. These viruses, designated "amphotropic," replicate in mouse, rabbit, mink, human, guinea pig, and rat cells, but not in hamster, quail, or duck cells. They show N-tropism for mouse cells, and do not trigger the XC cell response. They are distinct by interference and virus neutralization testing from the previously recognized mouse-tropic and xenotropic MuLV classes. Mouse-tropic viruses occuring along with three of the four amphotropic isolates were found to be distinguishable by virus neutralization from other mouse-tropic murine leukemia virus strains of laboratory mouse origin.  相似文献   

3.
Although xenotropic murine leukemia viruses cannot productively infect cells of laboratory mice, cells from various wild-derived mice can support replication of these viruses. Although the virus-sensitive wild mice generally lack all or most of the xenotropic proviral genes characteristic of inbred strains, susceptibility to exogenous infection is unrelated to inheritance of these sequences. Instead, susceptibility is controlled by a single dominant gene, designated Sxv, which maps to chromosome 1. Sxv is closely linked to, but distinct from Bxv-1, the major locus for induction of xenotropic murine leukemia viruses in laboratory mice. Genetic experiments designed to characterize Sxv show that this gene also controls sensitivity to a wild mouse virus with the interference properties of mink cell focus-forming murine leukemia viruses, and that Sxv-mediated susceptibility to xenotropic murine leukemia viruses is restricted by the mink cell focus-forming virus resistance gene Rmcf. These data, together with genetic mapping of the mink cell focus-forming virus cell surface receptor locus to this same region of chromosome 1, suggest that Sxv may encode a wild mouse variant of the mink cell focus-forming virus receptor that allows penetration by xenotropic murine leukemia viruses.  相似文献   

4.
Endogenous murine leukemia virus (MuLV) was induced with 5-iododeoxyuridine (IdUrd) from the high-leukemia mouse strain AKR and from two low-leukemia strains, C3H/He and BALB/c. A virus-free cell line from strain AKR readily gave rise to infectious, XC-positive MuLV upon treatment with IdUrd, whereas cells from strains C3H/He and BALB/c produced replication-deficient, XC-negative MuLV. IdUrd-induced cells also produced xenotropic and mink cell focus-forming MuLV. Xenotropic virus emerged at a higher titer from both AKR and BALB/c cells during two discrete time intervals, first at day 3 after induction and a second time during spread of the induced ecotropic MuLV. Xenotropic and mink cell focus-forming MuLVs were also produced by IdUrd-induced C3H/He cells but required another round of infection in Sc-1 cells for detection. The in vitro infectivity of endogenous ecotropic MuLV isolated by IdUrd induction from C3H/He cells correlated with pathogenicity in the Fv-1-compatible, leukemia-negative mouse strain NFS/N. Thus, the virulence of endogenous ecotropic MuLV may be an important factor in determining the leukemia incidence in these inbred strains of mice.  相似文献   

5.
D Ott  R Friedrich    A Rein 《Journal of virology》1990,64(2):757-766
Viral interference studies have demonstrated the existence of four distinct murine leukemia virus (MuLV) receptors on NIH 3T3 mouse cells. The four viral interference groups are ecotropic MuLV; mink cell focus inducing virus (MCF); amphotropic MuLV; and 10A1, a recombinant derivative of amphotropic MuLV that uses a unique receptor but also retains affinity for the amphotropic MuLV receptor. We report here that 10A1 infects rat and hamster cells, unlike its amphotropic parent. We isolated an infectious molecular clone of 10A1 and present here the sequences of the env genes and enhancer regions of amphotropic MuLV and 10A1. The deduced amino acid sequences of amphotropic MuLV and 10A1 gp70su are remarkably similar to those of MCF and xenotropic MuLV (for which mouse cells lack receptors), with 64% amino acids identical in the four groups. We generated a consensus from these comparisons. Further, the differences are largely localized to a few discrete regions: (i) amphotropic MuLV has two short insertions relative to MCF, at residues 87 to 92 and 163 to 169, and (ii) amphotropic MuLV and MCF are totally different in a hypervariable region, which is greater than 30% proline, at residues approximately 253 to 304. 10A1 closely resembles amphotropic MuLV in its N terminus but contains an MCF-type hypervariable region. These results suggest the possibility that receptor specificity is localized in these short variable regions and further that the unique receptor specificity of 10A1 is due to the novel combination of amphotropic MuLV and MCF sequences rather than to the presence of any novel sequences. The Env proteins of ecotropic MuLV are far more distantly related to those of the other four groups than the latter are to each other. We also found that the enhancer regions of amphotropic MuLV and 10A1 are nearly identical, although 10A1 is far more leukemogenic than amphotropic MuLV.  相似文献   

6.
Thymic epithelial reticulum (TER) cell lines were established from thymuses of a young healthy AKR mouse (A2T), a preleukemic AKR mouse (A6T), and two lymphoma-bearing AKR/Ms mice (ASLT-1 and ASLT-2). Numerous type-C virus particles with occasional budding forms were observed in all cell lines. Expression of XC-detectable, N-tropic, ecotropic virus was observed in every cell line, whereas the presence of xenotropic and mink cell focus-inducing (MCF) viruses could be detected only in TER cells derived from preleukemic and leukemic mice. Expression of xenotropic virus in various cells of newborn and young AKR mice could readily be induced by IUdR treatment, whereas MCF virus was never detected in these cells, with the exception of the A2T cell line after more than 20 passages, in which MCF virus with dual-tropic infectivity emerged in addition to ecotropic and xenotropic viruses. These spontaneous and induced MCF viruses were purified, and their virological properties were characterized. The cloned MCF viruses (MCFs AT1, AT2, AT3, and AT4-IU) showed dual tropism and produced cytopathic effect-like foci in mink lung cells. Preinfection with either ecotropic or xenotropic virus interfered with the infectivity of MCF viruses. Spontaneous leukemogenesis in AKR mice was accelerated by the inoculation of MCF viruses. These findings indicate that TER cells could serve as the host cells for the genetic recombination of the endogenous MuLV; the recombinant MuLV, MCF virus, appears to be most closely associated with leukemogenesis in AKR mice.  相似文献   

7.
Oncogenicity of AKR endogenous leukemia viruses.   总被引:11,自引:0,他引:11       下载免费PDF全文
Four biologically distinct groups of endogenous murine leukemia virus (MuLV) have been isolated from AKR mice. These viruses included (i) ecotopic XC+ MuLV that occur in high titer in normal tissues and serum of AKR mice throughout their life span, (ii) ecotropic XC- MuLV that are produced in high titers by leukemia cells, (iii) xenotropic MuLV that are readily demonstrable only in aged mice, and (iv) polytropic MuLV thatarise in the thymuses of aged mice as a consequence of genetic recombination between ecotropic and xenotropic MuLV. Virus of each of these biological classes were assayed in AKR mice for their ability to accelerate the occurrence of spontaneous leukemia. Certain isolates of ecotropic XC- MuLV and polytropic MuLV were found to have high oncogenic activity. These viruses induced 100% leukemias within 90 days of inoculation. In contrast, ecotropic XC+ MuLV that were obtained from AKR embryo fibroblasts and xenotropic MuLV that were obtained from the lymphoid tissues of aged AKR mice did not demonstrate oncogenic activity. These findings demonstrate fundamental differences between XC- and XC+ ecotropic MuLV that are found in leukemic and normal tissues, respectively. Furthermore, these findings point to the role of ecotropic XC- and polytropic MuLV in the spontaneous leukemogenesis of AKR mice.  相似文献   

8.
Two types of endogenous ecotropic murine leukemia viruses (MuLVs), termed AKV- and Cas-E-type MuLVs, differ in nucleotide sequence and distribution in wild mouse subspecies. In contrast to AKV-type MuLV, Cas-E-type MuLV is not carried by common laboratory mice. Wild mice of Mus musculus (M. m.) castaneus carry multiple copies of Cas-E-type endogenous MuLV, including the Fv-4(r) gene that is a truncated form of integrated MuLV and functions as a host's resistance gene against ecotropic MuLV infection. Our genetic cross experiments showed that only the Fv-4(r) gene was associated with resistance to ecotropic F-MuLV infection. Because the spontaneous expression of infectious virus was not detected in M. m. castaneus, we generated mice that did not carry the Fv-4(r) gene but did carry a single or a few endogenous MuLV loci. In mice not carrying the Fv-4(r) gene, infectious MuLVs were isolated in association with three of six Cas-E-type endogenous MuLV loci. The isolated viruses showed a weak syncytium-forming activity for XC cells, an interfering property of ecotropic MuLV, and a slight antigenic variation. Two genomic DNAs containing endogenous Cas-E-type MuLV were cloned and partially sequenced. All of the Cas-E-type endogenous MuLVs were closely related, hybrid-type viruses with an ecotropic env gene and a xenotropic long terminal repeat. Duplications and a deletion were found in a restricted region of the hypervariable proline-rich region of Env glycoprotein.  相似文献   

9.
The time course of murine leukemia virus production after chemical induction was determined in hamster-mouse somatic cell hybrids containing the xenotropic murine leukemia virus induction locus Bxv-1 or the ecotropic locus Akv-2. By using these hybrids, induction could be studied in the absence of secondary virus spread because xenotropic viruses cannot infect hybrid cells and ecotropic viruses cannot infect hybrids which have lost mouse chromosome 5. After induction, hybrids with Bxv-1 produced only a transient burst of virus, whereas those with Akv-2 continued to produce virus for periods in excess of 3 months. The presence or absence of other mouse chromosomes in the hybrid lines did not alter these induction patterns. Thus, endogenous murine leukemia virus loci differ in their response to induction, and both inducibility and the kinetics of virus expression are controlled at or near these proviral loci.  相似文献   

10.
The ability of naturally immune mouse sera to neutralize ecotropic AKR murine leukemia virus (MuLV) was examined by using unfrozen virus preparations harvested for 1 h. In this assay several mouse sera significantly and consistently neutralized MuLV infectivity. The ability of these sera to neutralize was correlated with the presence of antibodies against MuLV detectable in a radioimmune precipitation assay using radioactively labeled intact virions. This neutralization was specific, in that either N- or B-tropic viruses, but not Friend MuLV, were neutralized. In addition, neutralization could be abrogated with purified AKR MuLV gp71 at concentrations that do not interfere with virus infectivity but could not be abrogated with Rauscher MuLV gp71. Neutralizing activity could be removed by absorption with intact AKR MuLV, but not by absorption with Friend MuLV, a BALB/c xenotropic virus, or with NZB xenotropic virus. All the neutralizing activity of (B6C3)F1 mouse sera was associated with the immunoglobulin G fraction.  相似文献   

11.
The sequence of 863 contiguous nucleotides encompassing portions of the pol and env genes of NFS-Th-1 xenotropic proviral DNA was determined. This region of the xenotropic murine leukemia virus genome contains and env-specific segment that hybridizes exclusively to xenotropic and mink cell focus-forming but not to ecotropic proviral DNAs (C. E. Buckler et al., J. Virol. 41:228-236, 1982). The unique xenotropic env segment contained several characteristic deletions and insertions relative to the analogous region in AKR and Moloney ecotropic murine leukemia viruses. Portions of an endogenous env segment cloned from a BALB/c mouse embryo gene library that had a restriction map and hybridization properties typical of xenotropic viruses (A. S. Khan et al., J. Virol. 44:625-636, 1982) were also sequenced. The sequence of the endogenous env gene was very similar to the comparable region of the NFS-Th-1 xenotropic virus containing the characteristic deletions and insertions previously observed and could represent a segment of an endogenous xenotropic provirus.  相似文献   

12.
Seven murine leukemia virus field isolates (uncloned) from wild mice (Musmusculus) of four widely separated areas in southern California show an unusually wide in vitro host range. They replicate well in human, feline, canine, guinea pig, rabbit, rat, and mouse cells, whereas bovine, hamster, and avian cells are resistant. Since this host range includes that of both mouse tropic (ecotropic) and xenotropic murine leukemia viruses, they are designated as "amphotropic". No purely xenotropic virus component is detectable in these field isolates. They may represent the "wild" or ancestral viruses from which the ecotropic and xenotrophic murine leukemia virus strains of laboratory mice have been derived.  相似文献   

13.
3-Methylcholanthrene-induced T-cell thymic lymphomas in RF mice were examined for involvement of murine leukemia virus (MuLV)-related sequences in leukemogenesis. Both the expression of MuLV-related RNA species and the organization of endogenous MuLV proviral DNA were analyzed. Of 27 primary tumors examined, only 5 exhibited elevated MuLV-related RNA species homologous to xenotropic specific env DNA. None of these RNA species hybridized with ecotropic p15E DNA sequences. Only two of these five tumors contained MuLV-like RNA species that hybridized with ecotropic MuLV long terminal repeat sequences, despite the probe's ability to detect both ecotropic MuLV and mink cell focus-inducing viral RNA. No muLV resembling mink cell focus-inducing virus whose expression could be correlated with lymphomagenesis was detected in either preleukemic thymocytes, primary 3-methylcholanthrene-induced thymic tumors, tumors passaged in vivo, or cell lines derived from tumors. Restriction endonuclease analysis of DNA from both primary tumors and cell lines failed to reveal either proviral DNA with recombinant env genes or rearrangement of endogenous MuLV proviruses. Therefore, chemically induced lymphomagenesis in RF mice appears different from the spontaneous lymphomagenic process in AKR mice with respect to the involvement of endogenous MuLV sequences.  相似文献   

14.
Recombinant phages containing murine leukemia virus (MuLV)-reactive DNA sequences were isolated after screening of a BALB/c mouse embryo DNA library and from shotgun cloning of EcoRI-restricted AKR/J mouse liver DNA. Twelve different clones were isolated which contained incomplete MuLV proviral DNA sequences extending various distances from either the 5' or 3' long terminal repeat (LTR) into the viral genome. Restriction maps indicated that the endogenous MuLV DNAs were related to xenotropic MuLVs, but they shared several unique restriction sites among themselves which were not present in known MuLV proviral DNAs. Analyses of internal restriction fragments of the endogenous LTRs suggested the existence of at least two size classes, both of which were larger than the LTRs of known ecotropic, xenotropic, or mink cell focus-forming (MCF) MuLV proviruses. Five of the six cloned endogenous MuLV proviral DNAs which contained envelope (env) DNA sequences annealed to a xenotropic MuLV env-specific DNA probe; in addition, four of these five also hybridized to an ecotropic MuLV-specific env DNA probe. Cloned MCF 247 proviral DNA also contained such dual-reactive env sequences. One of the dual-reactive cloned endogenous MuLV DNAs contained an env region that was indistinguishable by AluI and HpaII digestion from the analogous segment in MCF 247 proviral DNA and may therefore represent a progenitor for the env gene of this recombinant MuLV. In addition, the endogenous MuLV DNAs were highly related by AluI cleavage to the Moloney MuLV provirus in the gag and pol regions.  相似文献   

15.
The recently described amphotropic group of murine leukemia viruses constitutes a distinct biological group, differing from the ecotropic and xenotropic groups in host range, cross interference, and serological reactivity. Viruses of this group have been detected only in wild mice from certain areas in California. By using a [3H]DNA probe synthesized in an endogenous reaction from detergent-lysed amphotropic virus (strain 1504-A), it was demonstrated that the amphotropic murine leukemia viruses are distinct biochemically, in that 20% of the viral genome sequences are not shared by AKR-type ecotropic or nay of three types of xenotropic murine leukemia virus tested. A subset of these amphotropic unique sequences, comprising one half of them, is present in the genome of wild mouse ecotropic viruses and in Moloney and Rauscher viruses as well. Sequences homologous to the entire genome of 1504-A amphotropic virus are present in the cellular DNA of all eight inbred mouse strains tested, as well as in wild Mus in Asia, in amounts varying from three to six complete viral genomes per haploid cell genome. Evidence is presented that at least 20% of the DNA sequences in both mouse- and mink-grown murine leukemia virus probes are of host-cell origin.  相似文献   

16.
Oligonucleotide probes specific for the Fv-1 N- and B-tropic host range determinants of the gag p30-coding sequence were used to analyze DNA clones of various murine leukemia virus (MuLV) and endogenous MuLV-related proviral genomes and chromosomal DNA from four mouse strains. The group of DNA clones consisted of ecotropic MuLVs of known Fv-1 host range, somatically acquired ecotropic MuLV proviruses, xenotropic MuLV isolates, and endogenous nonecotropic MuLV-related proviral sequences from mouse chromosomal DNA. As expected, the prototype N-tropism determinant is carried by N-tropic viruses of several different origins. All seven endogenous nonecotropic MuLV-related proviral sequence clones derived from RFM/Un mouse chromosomal DNA, although not recognized by the N probe, showed positive hybridization with the prototype B-tropism-specific probe. The two xenotropic MuLV clones derived from infectious virus (one of BALB:virus-2 and one of AKR xenotropic virus) failed to hybridize with the N- and B-tropic oligonucleotide probes tested and with one probe specific for NB-tropic Moloney MuLV. One of two endogenous xenotropic class proviruses derived from HRS/J mouse chromosomal DNA (J. P. Stoye and J. M. Coffin, J. Virol. 61:2659-2669, 1987) also failed to hybridize to the N- and B-tropic probes, whereas the other hybridized to the B-tropic probe. In addition, analysis of mouse chromosomal DNA from four strains indicates that hybridization with the N-tropic probe correlates with the presence or absence of endogenous ecotropic MuLV provirus, whereas the B-tropic probe detects abundant copies of endogenous nonecotropic MuLV-related proviral sequences. These results suggest that the B-tropism determinant in B-tropic ecotropic MuLV may arise from recombination between N-tropic ecotropic MuLV and members of the abundant endogenous nonecotropic MuLV-related classes including a subset of endogenous xenotropic proviruses.  相似文献   

17.
Many host cell surface proteins, including viral receptors, are incorporated into enveloped viruses. To address the functional significance of these host proteins, murine leukemia viruses containing the cellular receptors for Rous sarcoma virus (Tva) or ecotropic murine leukemia virus (MCAT-1) were produced. These receptor-pseudotyped viruses efficiently infect cells expressing the cognate viral envelope glycoproteins, with titers of up to 105 infectious units per milliliter for the Tva pseudotypes. Receptor and viral glycoprotein specificity and functional requirements are maintained, suggesting that receptor pseudotype infection recapitulates events of normal viral entry. The ability of the Tva and MCAT-1 pseudotypes to infect cells efficiently suggests that, in contrast to human immunodeficiency virus type 1 entry, neither of these retroviral receptors requires a coreceptor for membrane fusion. In addition, the ability of receptor pseudotypes to target infected cells suggests that they may be useful therapeutic reagents for directing infection of viral vectors. Receptor-pseudotyped viruses may be useful for identifying new viral receptors or for defining functional requirements of known receptors. Moreover, this work suggests that the production of receptor pseudotypes in vivo could provide a mechanism for expanded viral tropism with potential effects on the pathogenesis and evolution of the virus.  相似文献   

18.
A new virus previously arose in BALB/c females mated repeatedly to C57BL/6 (B6) males and then injected with fixed, activated B6 male spleen cells (V. S. Ter-Grigorov, O. Krifuks, E. Liubashevsky, A. Nyska, Z. Trainin, and V. Toder, Nat. Med. 3:37-41, 1997). In the present study, BALB/cJ mice inoculated with virus-containing plasma from affected mice developed splenomegaly, which was caused by increased numbers of Sca-1(+) Lin(-) hematopoietic stem cells (HSC) and their differentiated progeny. Biological and molecular analyses of a new virus revealed a mixture of murine leukemia viruses (MuLVs). These MuLVs comprised ecotropic and mink lung cell focus-forming (MCF) virus classes and are termed Rauscher-like MuLVs because they bear numerous similarities to the ecotropic and MCF viruses of the Rauscher MuLV complex but do not include a spleen focus-forming virus. The ecotropic virus component alone transferred some disease characteristics, while MCF virus alone did not. Thus, we have described a novel virus mixture, termed Rauscher-like MuLV, that causes an increase in hematopoiesis due to activation of pluripotent HSC. Experiments using mice and a protocol that replicated the pregnancy and immunization strategy of the original experiment demonstrated that endogenous BALB/c mouse ecotropic and xenotropic MuLVs are activated by these treatments. Emv1 was expressed in the spleens of multiparous mice but not in those of virgin mice, and Bxv1Emv1-pseudotyped MuLVs were recovered following injection of fixed, activated B6 cells. Thus, multiple pregnancies and allostimuli appear to have provided the signals required for activation of and recombination among endogenous viruses and could have resulted in generation of the Rauscher-like MuLV mixture.  相似文献   

19.
20.
An infectious NZB xenotropic murine leukemia virus (MuLV) provirus (NZB was molecularly cloned from the Hirt supernatant of NZB-IU-6-infected mink cells, and the nucleotide sequence of its env gene and long terminal repeat (LTR) was determined. The partial nucleotide sequence previously reported for the env gene of NFS-Th-1 xenotropic proviral DNA (Repaske, et al., J. Virol. 46:204-211, 1983) is identical to that of the infectious NZB xenotropic MuLV DNA reported here. Alignment of nucleotide or deduced amino acid sequences, or both, of xenotropic, mink cell focus-forming, and ecotropic MuLV proviral DNAs in the env region identified sequence differences among the three host range classes of C-type MuLVs. Major differences were confined to the 5' half of env; a high degree of homology was found among the three classes of MuLVs in the 3' half of env. Alignment of the nucleotide sequence of the LTR of NZB xenotropic MuLV with those of the LTRs of NFS-Th-1 xenotropic, mink cell focus-forming, and ecotropic MuLVs revealed extensive homology between the LTRs of xenotropic and MCF247 MuLVs. An inserted 6-base-pair repeat 5' to the TATA box was a unique feature of both NZB and NFS-Th-1 xenotropic LTRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号