首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
DNA binding factor GT-2 from Arabidopsis   总被引:2,自引:0,他引:2  
Complementary DNA clones encoding a DNA-binding factor have been obtained from Arabidopsis by DNA hybridization with a GT-2 factor cDNA clone from rice. The GT-2 gene appears to be present as a single copy in the Arabidopsis genome and is transcribed as a 2.1 kb mRNA which is not light-regulated. The longest open reading frame in the sequenced clones predicts a protein of 65 kDa, beginning with the first in-frame methionine. The protein contains basic, acidic, and proline/glutamine-rich motifs and has significant amino acid sequence homology to the rice GT-2 factor, including three regions of 50–75 amino acids each of greater than 60% identity. Two of these regions are predicted to form similar trihelix structures postulated to be involved in selective binding to specific variations of a GT-box motif DNA sequence found in the promoter regions of several plant genes. Except for weak similarity to a tobacco GT-box binding factor, GT-1a/B2F, Arabidopsis GT-2 has no similarity to other sequences in the databases. DNA-binding studies show that Arabidopsis GT-2 has binding characteristics similar to those of the rice GT-2 factor, but dissimilar to those of the tobacco GT-1a/B2F factor. The data indicate that a DNA-binding factor containing domains of similar structure and target-sequence specificity has been conserved between monocots and dicots.  相似文献   

6.
The analysis of pea rbcS-3A promoter sequence showed that BoxII was necessary for the control of rbcS-3A gene expression by light. GT-1, a DNA-binding protein that interacts with BoxII in vitro, is a good candidate for being a light-modulated molecular switch controlling gene expression. However, the relationship between GT-1 activity and light-responsive gene activation still remains hypothetical. Because no marked de novo synthesis was detected after light treatment, light may induce post-translational modifications of GT-1 such as phosphorylation or dephosphorylation. Here, we show that recombinant GT-1 (hGT-1) of Arabidopsis can be phosphorylated by various mammalian kinase activities in vitro. Whereas phosphorylation by casein kinase II had no apparent effect on hGT-1 DNA binding, phosphorylation by calcium/calmodulin kinase II (CaMKII) increased the binding activity 10–20-fold. Mass spectrometry analyses of the phosphorylated hGT-1 showed that amongst the 6 potential phosphorylatable residues (T86, T133, S175, T179, S198 and T278), only T133 and S198 are heavily modified. Analyses of mutants altered at T86, T133, S175, T179, S198 and T278 demonstrated that phosphorylation of T133 can account for most of the stimulation of DNA-binding activity by CaMKII, indicating that this residue plays an important role in hGT-1/BoxII interaction. We further showed that nuclear GT-1 DNA-binding activity to BoxII was reduced by treatment with calf intestine phosphatase in extracts prepared from light-grown plants but not from etiolated plants. Taken together, our results suggest that GT-1 may act as a molecular switch modulated by calcium-dependent phosphorylation and dephosphorylation in response to light signals.  相似文献   

7.
8.
9.
Infection of Nicotiana tabacum Samsun NN with tobacco mosaic virus (TMV) results in a hypersensitive plant response and leads to systemic acquired resistance (SAR). The induction of SAR is mediated by the plant hormone salicylic acid (SA) and is accompanied by the induced expression of a number of genes including the pathogenesis-related (PR) gene 1a. Previously, it has been found that TMV infection and SA treatment resulted in a reduction of binding of nuclear protein GT-1 to far-upstream regions (–902 to –656) of the PR-1a gene. To test if GT-1 is a negative regulator of PR-1a gene expression, the effects of mutations in the seven putative GT-1 binding sites in this region were studied in vitro using dimethyl sulfate interference footprinting and band shift assays. This showed that at least one of the seven sites is indeed a GT-1 binding site. However, when tested in transgenic plants, the mutations did not result in constitutive expression of the chimeric PR-1a/GUS transgene, while inducible expression after SA treatment was decreased. The results suggest that binding of GT-1-like proteins to far-upstream PR-1a promoter regions indeed influences gene expression. A possible model for GT-1's mode of action in PR-1a gene expression is discussed.  相似文献   

10.
A triplet of adjacent, highly similar GT motifs in the phyA promoter of rice functions to support maximal expression of this gene. We have obtained a recombinant clone that encodes a full-length nuclear protein, designated GT-2, which binds specifically to these target sequences. This novel protein contains acidic, basic and proline- + glutamine-rich regions, as well as two autonomous DNA-binding domains, one NH2-terminal and the other COOH-terminal, that discriminate with high resolution between the three GT motifs. A duplicated sequence of 75 amino acids, present once in each DNA-binding domain, appears likely to mediate DNA target element recognition. Each copy of this duplicated protein sequence is predicted to form three amphipathic alpha-helices separated from each other by two short loops. The absence of sequence similarity to other known proteins suggests that this predicted structural unit, which we term the trihelix motif, might be representative of a new class of DNA-binding proteins.  相似文献   

11.
The fungal cell possesses an essential carbohydrate cell wall. The outer layer, mannan, is formed by mannoproteins carrying highly mannosylated O- and N-linked glycans. Yeast mannan biosynthesis is initiated by a Golgi-located complex (M-Pol I) of two GT-62 mannosyltransferases, Mnn9p and Van1p, that are conserved in fungal pathogens. Saccharomyces cerevisiae and Candida albicans mnn9 knockouts show an aberrant cell wall and increased antibiotic sensitivity, suggesting the enzyme is a potential drug target. Here, we present the structure of ScMnn9 in complex with GDP and Mn2+, defining the fold and catalytic machinery of the GT-62 family. Compared with distantly related GT-78/GT-15 enzymes, ScMnn9 carries an unusual extension. Using a novel enzyme assay and site-directed mutagenesis, we identify conserved amino acids essential for ScMnn9 ‘priming’ α-1,6-mannosyltransferase activity. Strikingly, both the presence of the ScMnn9 protein and its product, but not ScMnn9 catalytic activity, are required to activate subsequent ScVan1 processive α-1,6-mannosyltransferase activity in the M-Pol I complex. These results reveal the molecular basis of mannan synthesis and will aid development of inhibitors targeting this process.  相似文献   

12.
The topological disposition of a form of UDP-glucuronyltransferase (called GT-1) in rat liver microsomes was examined. Concanavalin A-Sepharose failed to bind microsomal vesicles even though GT-1 has sugar chains of "high mannose" type, indicating that mannose-containing sugar chains of microsomal glycoproteins including GT-1 are not exposed to the outer surface of microsomal vesicles. Polyclonal antibodies raised against purified GT-1 could bind to microsomal vesicles, indicating that at least part of the GT-1 polypeptide chain is extruded to the outside of the microsomal membrane. Intact microsomal vesicles were digested with carboxypeptidase Y and then subjected to immunoblot analysis using the anti-GT-1 antibodies. It was thus found that the digestion resulted in cleavage of a C-terminal, 2-kDa fragment, leaving a 52-kDa fragment of GT-1 still tightly bound to the membrane. From these results, it is concluded that GT-1 is a transmembrane protein, which extrudes its C-terminal end (at least 2 kDa) to the outside of the membrane, whereas most of its polypeptide chain together with the sugar chains are located on the luminal side of the membrane.  相似文献   

13.
Vibrio proteolyticus chitobiose phosphorylase (ChBP) belongs to glycosyl transferase family 36 (GT-36), and catalyzes the reversible phosphorolysis of chitobiose into alpha-GlcNAc-1-phosphate and GlcNAc with inversion of the anomeric configuration. As the first known structures of a GT-36 enzyme, we determined the crystal structure of ChBP in a ternary complex with GlcNAc and SO(4). It is also the first structures of an inverting phosphorolytic enzyme in a complex with a sugar and a sulfate ion, and reveals a pseudo-ternary complex structure of enzyme-sugar-phosphate. ChBP comprises a beta sandwich domain and an (alpha/alpha)(6) barrel domain, constituting a distinctive structure among GT families. Instead, it shows significant structural similarity with glycoside hydrolase (GH) enzymes, glucoamylases (GH-15), and maltose phosphorylase (GH-65) in clan GH-L. The structural similarity reported here, together with distant sequence similarities between ChBP and GHs, led to the reclassification of family GT-36 into a novel GH family, namely GH-94.  相似文献   

14.
15.
Interactions between purified UDP-glucuronyltransferase from 3-methylcholanthrene-treated rat liver microsomes (named GT-1) and lysophosphatidylcholine, which is essential for expression of GT-1 activity, were examined. Phospholipid-free GT-1, which could not express its full activity [Yokota et al. (1988) J. Biochem. 104, 531-536], was activated fully by addition of lysophosphatidylcholine (0.04 mM final concentration) into the assay medium. Lysophosphatidylcholine also protected GT-1 effectively against heat inactivation. Palmitoyllysophosphatidylcholine and stearoyllysophosphatidylcholine were most successful for the activation and stabilization of GT-1. On treatment of GT-1 with carboxypeptidase Y, the transferase was inactivated immediately, but the treatment in the presence of lysophosphatidylcholine affected the activity only a little. Lysophosphatidylcholine was also found to protect GT-1 against cleavage by carboxypeptidase Y. On treatment of GT-1 with trypsin or aminopeptidase T, the activity was lost and GT-1 protein could be digested even when lysophosphatidylcholine was present. It is suggested that UDP-glucuronyltransferase forms an active and stable conformation, in which the carboxy-terminal region is protected against protease, with lysophosphatidylcholine.  相似文献   

16.
17.
Molecular dissection of GT-1 from Arabidopsis.   总被引:4,自引:1,他引:3       下载免费PDF全文
K Hiratsuka  X Wu  H Fukuzawa    N H Chua 《The Plant cell》1994,6(12):1805-1813
We isolated and characterized an Arabidopsis cDNA encoding the DNA binding protein GT-1. This protein factor, which contains 406 amino acids, is highly homologous to the previously described tobacco DNA binding protein GT-1a/B2F but is 26 amino acids longer. Recombinant Arabidopsis GT-1, which was obtained from in vitro translation, bound to probes consisting of four copies of pea small subunit of ribulose bisphosphate carboxylase rbcS-3A box II and required the same GGTTAA core binding site as the binding activity of an Arabidopsis nuclear protein preparation. However, unlike the truncated tobacco GT-1a prepared from Escherichia coli extracts, the full-length Arabidopsis GT-1 bound to pea rbcS-3A box III and Arabidopsis chlorophyll a/b binding protein CAB2 light-responsive elements, both of which contain GATA motifs. Deletion and mutational analyses suggested that the predicted trihelix region of GT-1 is essential for DNA binding. Moreover, GT-1 binds to target DNA as a dimer, and its C-terminal region contains a putative dimerization domain that enhances the binding activity. Transient expression of the GT-1::beta-glucuronidase fusion protein in onion cells revealed the presence of a nuclear localization signal(s) within the first 215 amino acids of GT-1.  相似文献   

18.
Two isoforms of UDP-glucuronyltransferase purified from rat liver (named GT-1) and kidney (named GT-2) have various properties in common but differ in their NH2-terminal sequences. In this study, the two forms were further found to have common immunochemical properties, i.e., they could not be distinguished by Ouchterlony double diffusion and immunoblotting analyses. These isoforms also had the same inducibility as shown by immunoblotting analysis: GT-2 protein in rat was increased by treatment with beta-naphthoflavone and 3-methylcholanthrene, whereas GT-1 was inducible by 3-methylcholanthrene. However, the effects of phospholipids on these enzymes were extremely different. 1-Naphthol glucuronizing activity of GT-1 was increased 7.5-8-fold by lysophosphatidylcholine, but the activity of GT-2 was increased only 3-3.6-fold. The transferase activity of GT-1 toward 4-methylumbelliferone was increased 2-2.5-fold by dilauroylphosphatidylcholine, but that of GT-2 was reduced, while its 4-nitrophenol glucuronidation activity was increased 1.5-fold by the phospholipid. These results indicate that the two similar UDP-glucuronyltransferases from rat liver and kidney interact differently with phospholipids and that the activation level of UDP-glucuronyltransferase activity with phospholipids depends on the aglycone substrates.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号