首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta-analysis reveals that N addition (ranging from 1.08 to 113.81 g m−2 year−1) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root-shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta-regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta-analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade-offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.  相似文献   

2.
陆啸飞  郭洁芸  王斌  乐旭 《生态学报》2024,44(4):1313-1323
大气氮沉降水平持续升高导致的外源氮输入增加,强烈影响了陆地生态系统的碳循环。目前,已有大量报道证实了氮沉降升高对全球陆地植被固碳的积极影响。虽然之前大部分研究将这一结果归因于光合作用增强导致的地上生物量增加,但最近的研究发现长期氮添加对植物地下根系的影响也同样重要。归纳整理了181篇公开发表的我国野外模拟氮沉降试验结果,采用整合分析(Meta-analysis)方法,定量评估了氮添加对我国陆地植被地上-地下生物量分配的影响特征和不同生态系统类型及施氮方式之间的影响差异。通过分析地上-地下生物量分配对氮添加的响应差异来探究植被碳增益对长期大气氮沉降增加的潜在响应机制。结果表明,氮添加显著增强了我国陆地植被的光合作用及碳固存,且植物碳增益在不同生态系统类型及施氮制度间有所差异。植物叶片的氮含量显著增加,使得叶片碳氮比及凋落物碳氮比显著降低,但并未显著影响细根的碳氮比。氮添加总体上显著提高了植物的净光合速率,但降低了光合利用效率。地上生物量,凋落物产量和根生物量平均分别显著增加了38%,17%和18%,总体上植物地上部分对氮添加的响应程度比地下部分更高。然而,不同生态系统类型的地上-地下生物...  相似文献   

3.
Nitrogen (N) and phosphorus (P), either individually or in combination, have been demonstrated to limit biomass production in terrestrial ecosystems. Field studies have been extensively synthesized to assess global patterns of N impacts on terrestrial ecosystem processes. However, to our knowledge, no synthesis has been done so far to reveal global patterns of P impacts on terrestrial ecosystems, especially under different nitrogen (N) levels. Here, we conducted a meta‐analysis of impacts of P addition, either alone or with N addition, on aboveground (AGB) and belowground biomass production (BGB), plant and soil P concentrations, and N : P ratio in terrestrial ecosystems. Overall, our meta‐analysis quantitatively confirmed existing notions: (i) colimitation of N and P on biomass production and (ii) more P limitation in tropical forest than other ecosystems. More importantly, our analysis revealed new findings: (i) P limitation on biomass production was aggravated by N enrichment and (ii) plant P concentration was a better indicator of P limitation than soil P availability. Specifically, P addition increased AGB and BGB by 34% and 13%, respectively. The effect size of P addition on biomass production was larger in tropical forest than grassland, wetland, and tundra and varied with P fertilizer forms, P addition rates, or experimental durations. The P‐induced increase in biomass production and plant P concentration was larger under elevated than ambient N. Our findings suggest that the global limitation of P on biomass production will become severer under increasing N fertilizer and deposition in the future.  相似文献   

4.
In subarctic ecosystems, plant growth is mostly limited by nutrient availability and harsh climate. Investigating how soil nutrient availability controls the plant community composition may therefore help to understand indirect effects of climate change. The study was conducted in a long-term field experiment on a subarctic-alpine fellfield dominated by woody evergreen shrubs, bryophytes, and lichens. To manipulate nutrient availability additions of NPK fertilizer, labile C, and fungicide (benomyl) were done in a fully factorial design, replicated in six blocks. The treatments were run for 10 years, and the aboveground plant biomass was harvested 4 and 16 years after initiating the experiment. In addition, soil inorganic N and P concentration was analyzed the same years. Increased nutrient availability (NPK fertilizer) largely increased the biomass of graminoids and unexpectedly of bryophytes, but not of other vascular plant groups. Also, limitation of soil nutrient availability caused by labile C addition decreased the relative proportion of green shoots in evergreen shrubs, although these were expected to cope better with the nutrient limitation than the opportunistic graminoids, which, by contrast, were unaffected. Reduced fungal biomass due to benomyl addition was accompanied by increased evergreen shrub and clubmoss biomass. Taken together, the effects of treatments were most pronounced 16 years after initiation of the experiment, but despite changes in biomass the overall plant community composition was resistant to environmental changes.  相似文献   

5.
郭洁芸  王雅歆  李建龙 《生态学报》2022,42(12):4823-4833
近年来,中国大气氮沉降水平不断增加,过量的活性氮输入深刻影响了我国陆地生态系统碳循环。虽然已有大量的研究报道了模拟氮添加实验对我国陆地生态系统碳动态的影响,但是由于复杂的地理条件和不同的施氮措施,关于植物和土壤碳库对氮添加的一般响应特征和机制仍存在广泛争议。因此,采用整合分析方法,收集整理了172篇已发表的中国野外氮添加试验结果,在全国尺度上探究氮添加对我国陆地生态系统植物和土壤碳动态的影响及其潜在机制。结果表明,氮添加显著促进了植物的碳储存,地上和地下生物量均显著增加,且地上生物量比地下生物量增加得多。同时,氮添加显著增加了凋落物质量,但对细根生物量没有显著影响。氮添加显著降低了植物叶片、凋落物和细根的碳氮比。总体上,氮添加显著增加了土壤有机碳含量并降低了土壤pH值,但对可溶性有机碳、微生物生物量碳和土壤呼吸的影响并不显著。在不同的地理条件下,土壤有机碳含量对氮添加的响应呈现增加、减少或不变的不同趋势。回归分析表明,地上生物量与土壤有机碳含量之间,以及微生物生物量碳与土壤有机碳含量之间呈负相关关系。虽然氮添加通过增加凋落物质量显著促进了植物碳输入,但同时也会通过刺激微生物降解来增加土...  相似文献   

6.
《植物生态学报》2016,40(10):1015
Aims Plant biomass reflects the primary productivity of community vegetation, and is the main resource of carbon input in the terrestrial ecosystem. It is usually limited by nitrogen (N) and phosphorus (P) availability in the soil. Alpine grassland around Qinghai Lake Basin has experienced extensive land-use changes due to the cultivation of native grassland and vegetation recovery on cropped land. In this experiment, two grassland types were chosen, natural alpine grassland (NG) and its adjacent restored grassland (RG), to determine the responses of plant community biomass to N and P additions with different land-use. Methods NH4NO3 and Ca(H2PO4)2·H2O were added in a completely randomized block design, with medium levels of 10 g N·m-2 and 5 g P·m-2. Soil NO3--N and available P contents, and the plant community biomass were measured in the two grasslands. Two-way ANOVA was used to determine the effects of nutrient additions on all measured indicators, and regression analysis was used to analyze the correlations between plant biomass and soil NO3--N and available P contents.Important findings Results showed: (1) N and P additions both increased grass biomass in the NG, and significantly elevated the total aboveground biomass, with the promoting effect of N addition higher than that of P addition; N addition significantly increased both grass and forb biomass in the RG, and markedly promoted the total aboveground biomass, while P addition had no effects on the functional groups and total aboveground biomass (p > 0.05). (2) N and P additions both had no effects on the belowground and total biomass in the NG, whereas N addition significantly increased the total biomass by 34% in the RG, which suggested that the effect of N limitation on the vegetation primary productivity was stronger in the RG at present stage. (3) The aboveground biomass in the NG increased with soil NO3--N content (p < 0.05), and the above- and below-ground as well as the total biomass were all positively correlated with soil NO3--N content in the RG (p < 0.01). These results indicated that the plant growth in alpine grassland around Qinghai Lake Basin was prone to N limitation, and the effect of P limitation changed with land-use. Soil available N might be the key limiting factor for vegetation restoration and reconstruction in the RG. The “Grain for Green” project (the land-use policy) and atmospheric N deposition are benefiting both plant growth and C accumulation in the alpine grassland ecosystem around Qinghai Lake Basin.  相似文献   

7.
李春丽  李奇  赵亮  赵新全 《植物生态学报》2016,40(10):1015-1027
植物群落生物量反映了植被的初级生产能力, 是陆地生态系统碳(C)输入的最主要来源, 往往受到自然界中氮(N)、磷(P)元素供应的限制。该试验以青藏高原环青海湖地区的高寒草原为研究对象, 探讨了天然草地和退耕恢复草地植被群落生物量对N (10 g·m-2)、P (5 g·m-2)养分添加的响应。N、P添加显著增加了天然草地禾草的生物量, 进而促使地上总生物量显著提高。退耕恢复草地禾草和杂类草的生物量对N添加均有一致的正响应, 从而促使地上总生物量显著增加174%, 群落地上和地下总生物量显著增加34%; 而P添加对恢复草地生物量各项参数均无显著影响。回归分析显示: 天然草地植物群落地上生物量随土壤中NO3--N含量的增加而增加(p < 0.05), 退耕恢复草地植被地上、地下和总生物量均与土壤NO3--N含量显著正相关(p < 0.01), 说明环湖地区高寒草原植物生长主要受N供应的限制, P的限制作用随土地利用方式的转变和群落演替阶段的不同而变化; 相比天然草地, 恢复草地在现阶段植被初级生产力受N的限制作用更强烈, 土壤中可利用N含量是限制其植被自然恢复和重建的关键因子。  相似文献   

8.
Human-driven changes in nitrogen (N) and phosphorus (P) inputs are modifying biogeochemical cycles and the trophic state of many habitats worldwide. These alterations are predicted to continue to increase, with the potential for a wide range of impacts on invertebrates, key players in ecosystem-level processes. Here, we present a meta-analysis of 1679 cases from 207 studies reporting the effects of N, P, and combined N + P enrichment on the abundance, biomass, and richness of aquatic and terrestrial invertebrates. Nitrogen and phosphorus additions decreased invertebrate abundance in terrestrial and aquatic ecosystems, with stronger impacts under combined N + P additions. Likewise, N and N + P additions had stronger negative impacts on the abundance of tropical than temperate invertebrates. Overall, the effects of nutrient enrichment did not differ significantly among major invertebrate taxonomic groups, suggesting that changes in biogeochemical cycles are a pervasive threat to invertebrate populations across ecosystems. The effects of N and P additions differed significantly among invertebrate trophic groups but N + P addition had a consistent negative effect on invertebrates. Nutrient additions had weaker or inconclusive impacts on invertebrate biomass and richness, possibly due to the low number of case studies for these community responses. Our findings suggest that N and P enrichment affect invertebrate community structure mainly by decreasing invertebrate abundance, and these effects are dependent on the habitat and trophic identity of the invertebrates. These results highlight the important effects of human-driven nutrient enrichment on ecological systems and suggest a potential driver for the global invertebrate decline documented in recent years.  相似文献   

9.
林婉奇  蔡金桓  薛立 《生态学报》2019,39(18):6738-6744
人类活动改变了氮素从大气向陆地生态系统输入的方式和速率,进而导致森林生态系统养分变化和失衡。研究氮磷添加对不同密度樟树(Cinnamomum camphora)幼苗生长和叶片性状的影响,可以为全球氮磷沉降背景下亚热带地区樟树人工林的经营管理提供依据。本试验以1年生樟树幼苗为试验材料,选择氯化铵(NH_4Cl)作为氮肥模拟大气氮沉降,以二水合磷酸二氢钠(NaH_2PO_4·2H_2O)模拟磷添加。氮磷处理设置CK、施N、施P和施N+P 4个水平,种植密度设置10、20、40和80株·m~(-2 )4个水平。实验数据表明:N、P和N+P处理对樟树幼苗的苗高和地径均有促进作用,且N+P处理对幼苗生长的促进效果最好。N、P和N+P处理在整体上均能增加幼苗叶片的SPAD值,N和N+P处理均增加了幼苗叶片的比叶面积(SLA),而P处理减少了幼苗的SLA。随着种植密度的增大,N、P和N+P处理下樟树平均单株幼苗的苗高、地径、SPAD值呈现下降的趋势,各施肥处理下叶片的SLA变化规律不明显。密度和氮磷添加对叶片的SPAD值产生显著的交互作用。  相似文献   

10.
全球尺度上氮添加影响植物生物量分配但不影响不同器官间的异速生长关系 生物量在不同器官间的分配是植物对环境变化响应的一个关键生态生理学过程。然而,在全球尺度上有关不同陆地生态系统植物生物量分配对氮沉降响应的认识还比较欠缺。本文通过整合分析333篇已发表文章的5474个观测值,基于“最优分配假说”和“异速分配假说”,评估了全球尺度上氮添加对植物生物量及其在不同器官间分配的影响。结果表明:(1)氮添加显著增加了整株植物或不同器官的生物量,降低了根冠比和根质量分数,但对叶质量分数和茎质量分数无显著影响;(2)氮添加对不同器官质量分数的影响受实验条件、植物功能性状、纬度、氮添加率等因子单独或交互作用的调控;(3)氮添加对生物量在不同器官间的异速分配率无显著影响,表明氮添加导致的根冠比和根质量分数减少是在异速分配模式下由整株植物生物量增加而致。虽然氮添加改变了地上和地下部分的质量分数,但不同器官生物量间异速分配模式的稳定性表明“异速分配假说”能更好地描述植物生物量分配对氮添加的响应规律。该研究结果将有助于深入认识氮沉降环境下植物生物量的分配规律,同时表明将生物量分配纳入有关氮沉降对陆地生态系统影响的预测模型中的重要性。  相似文献   

11.
典型草原建群种羊草对氮磷添加的生理生态响应   总被引:1,自引:0,他引:1       下载免费PDF全文
由于人类活动和气候变化的共同作用, 大气氮(N)沉降日益加剧, 使得陆地生态系统中的可利用性N显著增加, 生态系统更易受其他元素如磷(P)的限制。然而, 目前关于N、P养分添加对草原生态系统不同组织水平的影响研究较少, 相关机制尚不清楚。该文以内蒙古典型羊草(Leymus chinensis)草原为研究对象, 通过连续两年(2011-2012年)的N和P养分添加实验, 研究建群种羊草的生理生态性状、种群生物量和群落初级生产力对N、P添加的响应及其适应机制。结果表明: 羊草草原不同组织水平对N、P添加的响应不同。群落水平上, 地上净初级生产力在不同降水年份均受N和P元素的共同限制, N、P共同添加显著提高了地上净初级生产力; 物种水平上, N、P添加对羊草种群生物量和密度, 以及相对生物量均没有显著影响, 表明羊草能够维持种群的相对稳定; 个体水平上, 在正常降水年份(2011年), 羊草生长主要受N素限制, 而在湿润年份(2012年), 降水增加使得羊草生长没有受到明显的养分限制。羊草通过增加比叶面积、叶片大小和叶片N含量, 提高整体光合能力, 以促进个体生长。总之, 内蒙古典型草原群落净初级生产力受N、P元素共同限制, 作为建群种的羊草, 其对N、P添加的响应因组织水平而异, 也受年际间降水变化的影响。  相似文献   

12.
四种荒漠草原植物的生长对不同氮添加水平的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
大气氮(N)沉降增加加速了生态系统N循环, 从而会对生态系统的结构和功能产生巨大的影响, 尤其是一些受N限制的生态系统.研究N添加对荒漠草原植物生长的影响, 可为深入理解N沉降增加对我国北方草原群落结构的影响提供基础数据.该文基于2011年在宁夏荒漠草原设置的N沉降增加的野外模拟试验, 研究了两年N添加下4个常见物种(牛枝子(Lespedeza potaninii),老瓜头(Cynanchum komarovii),针茅(Stipa capillata)和冰草(Agropyron cristatum))不同时期种群生物量和6-8月份相对生长速率的变化特征.并通过分析物种生长与植物(群落和叶片水平)和土壤碳(C),N,磷(P)生态化学计量学特征的关系, 探讨C:N:P化学计量比对植物生长养分限制的指示作用.结果显示N添加促进了4个物种的生长, 但具有明显的种间差异性, 且这种差异也存在于相同生活型的不同物种间.总体而言, 4个物种种群生物量与叶片N浓度,叶片N:P,群落N库,土壤全N含量和土壤N:P存在明显的线性关系, 与植物和土壤C:N和C:P的相关关系相对较弱.几个物种相对生长速率与植物和土壤N:P也呈现一定程度的正相关关系, 但与其他指标相关性较弱.以上结果表明, 短期N沉降增加提高了植物的相对生长速率, 促进了植物生长, 且更有利于针茅和老瓜头的生物量积累, 从而可能会逐渐改变荒漠草原群落结构.植物N:P和土壤N:P对荒漠草原物种生长具有较强的指示作用: 随着土壤N受限性逐渐缓解, 土壤N含量和N:P相继升高, 可供植物摄取的N增多, 因而有利于植物生长和群落N库积累.  相似文献   

13.
《植物生态学报》2016,40(2):165
Aims The increase in atmospheric N deposition has accelerated N cycling of ecosystems, thus altering the structure and function of ecosystems, especially in those limited by N availability. Studies on the response of plant growth to artificial N addition could provide basic data for a better understanding of how the structure of grasslands in northern China responds to increasing N deposition. Methods We investigated the seasonal dynamics of plant growth of four species after 2-year multi-level N addition in a field experiment conducted in a desert steppe of Ningxia in 2011. Plant biomass and the relative growth rate (RGR) of the studied species were measured and their relationships with C:N:P ratios of plants (community and leaf levels) and soils were analyzed. Important findings Results in 2012 showed that 2-year N addition promoted the growth of the four species and the effects were different among growth forms and were species-specific. In general, the plant biomass of the studied species was significantly correlated with leaf N concentration, leaf N:P ratio, community N pool, soil total N content and soil N:P ratio, while only weak relationships were observed between plant biomass and C:N and C:P ratios of plants and soils. In contrast, there was a significant linear relationship between RGR and N:P ratios both of plants and soils.Our results suggest that short-term N addition promoted the accumulation of plant biomass, and the species-specific responses to stimulated N addition can directly affect the structure of the desert steppe ecosystem. Plant N:P ratio and soil N:P ratio could indicate nutrient limitation of plant growth to a certain extent: N addition increased soil N content and N:P ratio, and thus relieved N limitation gradually. Once more N is available to plants, the growth of plants and the accumulation of community N was stimulated in turn.  相似文献   

14.
羊草(Leymus chinensis)是我国北方典型草原群落的主要建群种和优势种, 由于长期的过度放牧, 羊草草原生态系统的结构和功能严重退化。养分添加作为恢复草地生态系统的一种管理措施, 其应用目前还处于实验性研究阶段。关于羊草的地上-地下功能性状对养分添加, 尤其是P添加的响应研究较少, 相关机制尚不十分清楚。为此, 该文以羊草为研究对象, 通过温室栽培进行N (50, 100, 250 mg N·kg-1)和P (5, 10, 25 mg P·kg-1)各3个水平的养分添加实验, 研究羊草的地上-地下功能性状对N、P添加的响应及适应机制。主要研究结果表明: 1)羊草的地上生物量和总生物量主要受N添加的影响, N添加显著提高了羊草的地上生物量, 而地下生物量主要受P添加的影响, 尤其在中N和高N水平, P添加显著降低了羊草的地下生物量。羊草的根冠比受N、P添加的共同影响, 随着N、P添加梯度加大, 根冠比显著降低, N、P添加促进了羊草生物量向地上部分的分配和N、P向叶片的分配。2)在低N和高N水平, 羊草对P添加的响应与适应机制不同。低N水平, 羊草主要通过增加光合速率和比根长(SRL), 提高光合能力和根系对N的获取能力促进地上部分的生长, 而根系对P的吸收有利于地下部分的生长; 在高N水平, P添加对羊草的个体生长无明显促进作用, 甚至地下生物量明显受到P素抑制, 羊草主要通过保持较高的比叶面积(SLA)和SRL, 提高对光资源的截获能力和根系对N的获取和吸收能力, 维持地上部分的生长。3)相对于地上性状, P添加对羊草的地下性状影响更大, 羊草的SLASRL呈较弱的正相关关系, 表明叶片与根系在资源获取和利用方面具有相对独立性。  相似文献   

15.
AimsLeymus chinensis is a constructive and dominant species in typical steppe of northern China. The structure and functions of L. chinensis grassland ecosystem has been degenerated seriously due to long-term overgrazing in recent decades. As an effective measure to restore the degraded grasslands, the effects of nutrient addition on plant growth and ecosystem structure and functioning have been paid more attention in manipulation experimental research. The effects of nutrient addition, especially P addition on the above- and below-ground functional traits of L. chinensis have rarely been studied; particularly the underpinning mechanisms remain unclear. Our objective is to examine the responses and adaptive mechanisms of L. chinensis to different levels of N and P additions. MethodsWe conducted a culture experiment in the greenhouse, with three levels of N (50, 100 and 250 mg N·kg-1) and P (5, 10 and 25 mg P·kg-1) addition treatments. The above- and below-ground biomass, leaf traits (e.g., specific leaf area, leaf N and P contents) and root traits (e.g., specific root length, root N and P contents) of L. chinensis were determined in this study.Important findings Our results showed that: 1) the aboveground biomass and total biomass of L. chinensis were mostly affected by N addition, while the belowground biomass was mainly affected by P addition. N addition greatly enhanced the aboveground biomass of L. chinensis, while P addition reduced the belowground biomass at the moderate and high N levels. The root-shoot ratio of L. chinensis was influenced by both N and P additions, and root-shoot ratio decreased with increasing N and P levels. N and P additions promoted more biomass and N and P allocations to aboveground and leaf biomass. 2) Leymus chinensis showed different responses and adaptive mechanisms to P addition at low and high N levels. At low N level, L. chinensis exhibited high photosynthetic rate and specific root length (SRL) to improve photosynthetic capacity and root N acquisition, which promoted aboveground biomass. High root P content was favorable for belowground biomass. At high N level, P addition did not significantly affect plant growth of L. chinensis, even reduced its belowground biomass. Leymus chinensis showed high specific leaf area (SLA) and SRL to improve light interception and N acquisition in order to maintain stable aboveground biomass. 3) P addition greatly impacted below-ground than above-ground functional traits. SLA exhibited a weakly positive correlation with SRL, indicating L. chinensis exhibited relatively independence of resource acquirement and utilization between leaf and root functional traits.  相似文献   

16.
研究水分和养分添加对植物功能性状的影响, 对于揭示植物对环境变化的响应和适应规律至关重要。该文采用盆栽试验的方法, 进行不同水平水分处理(增水50%, 减水50%, 以498 mm降水量作为对照)和养分添加(无养分添加, 单施氮肥, 单施磷肥, 氮磷共施), 研究羊草(Leymus chinensis)的10种功能性状和地上生物量对水分和养分添加的响应。得出以下结论: (1)双因素方差分析结果表明, 水分主效应对羊草株高、分蘖数、茎生物量、叶生物量、叶面积、叶质量、净光合速率、蒸腾速率、水分利用效率存在显著影响; 养分主效应对羊草分蘖数、茎生物量、净光合速率、蒸腾速率、水分利用效率存在显著影响; 水分和养分的交互作用对羊草分蘖数、茎生物量、蒸腾速率、水分利用效率存在显著影响。(2)各功能性状对降水量的响应在不同养分添加水平是不同的, 分蘖数和叶面积在单施氮肥和氮磷共施条件下随降水量增加而增加, 而在无养分添加和单施磷肥条件下无显著变化; 茎生物量在无养分添加、单施氮肥和单施磷肥条件下随降水量增加而增加, 而在氮磷共施条件下无增加趋势; 比叶面积在单施氮肥条件下增水处理显著低于对照组, 而在其他养分添加条件下无明显变化。(3)短期氮磷处理显著影响羊草叶片光合生理性状, 而对叶形态性状影响不显著。(4)羊草地上生物量随降水量的增加呈现上升趋势, 并且在单施氮肥条件下, 增水处理使地上生物量达到最高, 为522.55 g·m -2。总之, 羊草的功能性状对降水量增加表现出明显的响应, 响应格局在不同养分条件下不同, 反映了其对水肥环境变化的适应。  相似文献   

17.
Landscape transformation and atmospheric nutrient depositions, important global change drivers, are affecting the vegetation and soil properties of natural dry tropical forest and derived savanna ecosystems in India. This study assessed the effect of continuous N and P additions for 6 years on the size distribution and properties of soil aggregates in forest–ecotone–savanna gradient. Addition of N significantly increased the proportion of macroaggregates in forest and ecotone, whereas the same input significantly decreased their proportion in the savanna. Consequently, the stability of soil aggregates increased significantly in forest and ecotone, whereas it decreased significantly in the savanna. The effect of P addition on soil aggregate stability was marginal. N addition also altered the biological and chemical qualities of soil aggregates. It caused increase in microbial biomass C (MBC) associated with macroaggregates in forest and ecotone; however, in savanna, MBC increased in the microaggregates. P addition did not affect the amount of MBC in both types of soil aggregates. Because of rapid accumulation of applied N and P in the microbial biomass, the ratios of MBC to microbial biomass nitrogen (MBN) as well as microbial biomass phosphorous (MBP) were decreased in both aggregates. Overall, the effect of N addition was more marked than that of P addition, suggesting that N is more limiting than P in these dry tropical ecosystems. In the current scenario of N loading, continued soil N loading in forest may lead to increased macroaggregates with associated MBC and MBN and greater aggregate stability. In contrast, the extensively distributed savannas may show the reverse trend leading to a decrease in soil fertility.  相似文献   

18.
Human activities have greatly increased the availability of biologically active forms of nutrients [e.g., nitrogen (N), phosphorous (P), potassium (K), magnesium (Mg)] in many soil ecosystems worldwide. Multi‐nutrient fertilization strongly increases plant productivity but may also alter the storage of carbon (C) in soil, which represents the largest terrestrial pool of organic C. Despite this issue is important from a global change perspective, key questions remain on how the single addition of N or the combination of N with other nutrients might affect C sequestration in human‐managed soils. Here, we use a 19‐year old nutrient addition experiment on a permanent grassland to test for nutrient‐induced effects on soil C sequestration. We show that combined NPKMg additions to permanent grassland have ‘constrained’ soil C sequestration to levels similar to unfertilized plots whereas the single addition of N significantly enhanced soil C stocks (N‐only fertilized soils store, on average, 11 t C ha?1 more than unfertilized soils). These results were consistent across grazing and liming treatments suggesting that whilst multi‐nutrient additions increase plant productivity, soil C sequestration is increased by N‐only additions. The positive N‐only effect on soil C content was not related to changes in plant species diversity or to the functional composition of the plant community. N‐only fertilized grasslands show, however, increases in total root mass and the accumulation of organic matter detritus in topsoils. Finally, soils receiving any N addition (N only or N in combination with other nutrients) were associated with high N losses. Overall, our results demonstrate that nutrient fertilization remains an important global change driver of ecosystem functioning, which can strongly affect the long‐term sustainability of grassland soil ecosystems (e.g., soils ability to deliver multiple ecosystem services).  相似文献   

19.
青藏高原正经历着明显的温暖化过程, 由此引起的土壤温度的升高促进了土壤中微生物的活性, 同时青藏高原东缘地区大气氮沉降十分明显, 并呈逐年增加的趋势, 这些环境变化均促使土壤中可利用营养元素增加, 因此深入了解青藏高原高寒草甸植物生物量对可利用营养元素增加的响应, 是准确预测未来全球变化背景下青藏高原高寒草甸碳循环过程的重要基础。该研究基于在青藏高原高寒草甸连续4年(2009-2012年)氮、磷添加后对不同功能群植物地上生物量、群落地上和地下生物量的测定, 探讨高寒草甸生态系统碳输入对氮、磷添加的响应。结果表明: (1)氮、磷添加均极显著增加了禾草的地上绝对生物量及其在群落总生物量中所占的比例, 同时均显著降低了杂类草在群落总生物量中的比例, 此外磷添加极显著降低了莎草地上绝对生物量及其在群落总生物量中所占的比例。(2)氮、磷添加均显著促进了青藏高原高寒草甸的地上生物量增加, 分别增加了24%和52%。(3)氮添加对高寒草甸地下生物量无显著影响, 而磷添加后地下生物量有增加的趋势。(4)氮添加对高寒草甸植物总生物量无显著影响, 而磷添加后植物总生物量显著增加。研究表明, 氮、磷添加可缓解青藏高原高寒草甸植物生长的营养限制, 促进植物地上部分的生长, 然而高寒草甸植物的生长极有可能更受土壤中可利用磷含量的限制。  相似文献   

20.
Leachate from litter and vegetation penetrates permafrost surface soils during thaw before being exported to aquatic systems. We know this leachate is critical to ecosystem function downstream and hypothesized that thaw leachate inputs would also drive terrestrial microbial activity and nutrient uptake. However, we recognized two potential endpoint scenarios: vegetation leachate is an important source of C for microbes in thawing soil; or vegetation leachate is irrelevant next to the large background C, N, and P pools in thaw soil solution. We assessed these potential outcomes by making vegetation leachate from frozen vegetation and litter in four Arctic ecosystems that have a variety of litter quality and soil C, N, and P contents; one of these ecosystems included a disturbance recovery chronosequence that allowed us to test our second hypothesis that thaw leachate response would be enhanced in disturbed ecosystems. We added water or vegetation leachate to intact, frozen, winter soil cores and incubated the cores through thaw. We measured soil respiration throughout, and soil solution and microbial biomass C, N, and P pools and gross N mineralization immediately after a thaw incubation (?10 to 2°C) lasting 6 days. Vegetation leachate varied strongly by ecosystem in C, N, and P quantity and stoichiometry. Regardless, all vegetated ecosystems responded to leachate additions at thaw with an increase in the microbial biomass phosphate flush and an increase in soil solution carbon and nitrogen, implying a selective microbial uptake of phosphate from plant and litter leachate at thaw. This response to leachate additions was absent in recently disturbed, exposed mineral soil but otherwise did not differ between disturbed and undisturbed ecosystems. The selective uptake of P by microbes implies either thaw microbial P limitation or thaw microbial P uptake opportunism, and that spring thaw is an important time for P retention in several Arctic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号