首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Special AT-rich sequence-binding protein 1 (SATB1), a DNA-binding protein expressed predominantly in thymocytes, recognizes an ATC sequence context that consists of a cluster of sequence stretches with well-mixed A's, T's, and C's without G's on one strand. Such regions confer a high propensity for stable base unpairing. Using an in vivo cross-linking strategy, specialized genomic sequences (0.1–1.1 kbp) that bind to SATB1 in human lymphoblastic cell line Jurkat cells were individually isolated and characterized. All in vivo SATB1-binding sequences examined contained typical ATC sequence contexts, with some exhibiting homology to autonomously replicating sequences from the yeast Saccharomyces cerevisiae that function as replication origins in yeast cells. In addition, LINE 1 elements, satellite 2 sequences, and CpG island–containing DNA were identified. To examine the higher-order packaging of these in vivo SATB1-binding sequences, high-resolution in situ fluorescence hybridization was performed with both nuclear “halos” with distended loops and the nuclear matrix after the majority of DNA had been removed by nuclease digestion. In vivo SATB1-binding sequences hybridized to genomic DNA as single spots within the residual nucleus circumscribed by the halo of DNA and remained as single spots in the nuclear matrix, indicating that these sequences are localized at the base of chromatin loops. In human breast cancer SK-BR-3 cells that do not express SATB1, at least one such sequence was found not anchored onto the nuclear matrix. These findings provide the first evidence that a cell type–specific factor such as SATB1 binds to the base of chromatin loops in vivo and suggests that a specific chromatin loop domain structure is involved in T cell–specific gene regulation.  相似文献   

2.
CHO cells were grown in the presence of 1 M CdCl2 and subjected to ATP-dependent replicative DNA synthesis after permeabilization. By decreasing the density of the cell culture replicative DNA synthesis was diminishing. At higher than 2 × 106 cell/ml concentration Cd had virtually no effect on the rate of DNA replication. Growth at higher cell concentrations could be supressed by increasing Cd concentration. After Cd treatment cells were synchronized by counterflow centrifugal elutriation. Cadmium toxicity on cell growth in early and mid S phase led to the accumulation of enlarged cells in late S phase. Flow cytometry showed increased cellular and nuclear sizes after Cd treatment. As the cells progressed through the S phase, 11 subpopulations of nuclear sizes were distinguished. Apoptotic chromatin changes were visualized by fluorescent microscopy in a cell cycle dependent manner. In the control untreated cells the main transitory forms of chromatin corresponded to those we have published earlier (veil-like, supercoiled chromatin, fibrous, ribboned structures, chromatin strings, elongated prechromosomes, precondensed chromosomes). Cadmium treatment caused: (a) the absence of decondensed veil-like structures and premature chromatin condensation in the form of apoptotic bodies in early S phase (2.2–2.4 average C-value), (b) the absence of fibrous structures, the lack of supercoiled chromatin, the appearance of uncoiled ribboned chromatin and perichromatin semicircles, in early mid S phase (2.5–2.9 C), (c) the presence of perichromatin fibrils and chromatin bodies in mid S phase (2.9–3.2 C), (d) early intra-nuclear inclusions, elongated forms of premature chromosomes, the extrusion and rupture of nuclear membrane later in mid S phase (3.3–3.4 C), (e) the exclusion of chromatin bodies and the formation of clusters of large-sized perichromatin granules in late S phase (3.5–3.8 C) and (f) large extensive disruptions and holes in the nuclear membrane and the clumping of incompletely folded chromosomes (3.8–4. C).  相似文献   

3.
We have developed a method by which nuclear shells containing nucleoli can be isolated from membrane-depleted rat liver nuclei. This method involves the removal of the internal chromatin. This chromatin is expelled from the nuclear shell using combinations of low and high ionic strength buffers. The expelled internal part is subsequently digested with DNase I or micrococcal nuclease. Examination by electron microscopy of the nuclear and the nucleolar structures at various steps of the isolation procedure shows that the nucleoli are anchored in the peripheral lamina by a pedicle that is continuous with an intranucleolar network. This network is masked in situ by nucleolar granules. The pedicle and the network which support the nucleolar DNA are composed mainly of non-histone proteins insoluble in 2M NaCl.  相似文献   

4.
We have developed a method by which nuclear shells containing nucleoli can be isolated from membrane-depleted rat liver nuclei. This method involves the removal of the internal chromatin. This chromatin is expelled from the nuclear shell using combinations of low and high ionic strength buffers. The expelled internal part is subsequently digested with DNase I or micrococcal nuclease. Examination by electron microscopy of the nuclear and the nucleolar structures at various steps of the isolation procedure shows that the nucleoli are anchored in the peripheral lamina by a pedicle that is continuous with an intranucleolar network. This network is masked in situ by nucleolar granules. The pedicle and the network which support the nucleolar DNA are composed mainly of non-histone proteins insoluble in 2M NaCl.  相似文献   

5.
Interphase nuclear structure was studied in 15 leguminous species. Eleven species showed chromocentric interphase nuclei while the remaining 4 had reticulate nuclei. The number of chromocenters appeared to be dependent on the number of chromosomes (2n). The total proportion of condensed chromatin as determined by planimetry was found to vary from 11–24% in chromocentric nuclei and 29–62% in reticulate nuclei. The condensed chromatin amount showed a direct correlation with the nuclear DNA content (2C). Though the interphase nuclear structure remained same in differentiated cells, the amount of condensed chromatin was considerably less than that in the meristematic cells, indicating underreplication of heterochromatin during differentiation. HCl-Giemsa method seems to be the simplest method for detection of underreplication in plants.1. NCL Communication No. 35942. To whom all the correspondence should be addressed  相似文献   

6.
The structure and the polypeptide composition of the nuclear shell isolated from interphase HeLa cells have been investigated and compared to those of the intranuclear material. The isolated nuclear shell contains chromatin superstructures (28-32 nm thick fibres) made of tightly packed nucleosomes that resist low ionic strength conditions and that are associated with the three nuclear lamins. Chromatin in the nuclear shell exhibits very simple chemical composition. Especially, non-histone proteins are lacking. The results presented here rule out the possibility that the nuclear shell results from contamination of lamina by intranuclear elements. They suggest that the lamins are directly involved in the specific properties and in the organization of chromatin in the nuclear shell.  相似文献   

7.
Summary Rat liver mitochondrial polyribosomes were isolated free from cytoplasmic ribonucleoprotein contaminations in a number of criteria (sedimentation and buoyant density patterns, ribosomal RNA composition). Heterogeneous poly A containing RNA from mitochondrial polysomes was purified by two-stage cellulose chromatography. This RNA was in vitro labelled with125I up to specific activity ~106–107 cts.min–1.µg –1 and used for hybridization experiments with separate complementary strands of mitochondrial DNA and nuclear DNA fragments. The proportions of mitochondrial poly A containing RNA that is complementary to heavy and light strands of mtDNA were respectively 31.5% and 8.3%. Besides, a significant RNA fraction was complementary to unique sequences of nuclear DNA (2–3 copies per haploid genome). The hybrids that were formed possessed a high Tm indicative of a perfect base pairing. A dual intracellular origin of mitochondrial messenger RNA is discussed.  相似文献   

8.
9.
Summary The macronuclear chromatin of Oxytrichia nova consists of chromatin fragments which are fully soluble in 0.2 mM EDTA and whose DNA length varies from 500–25 000 bp. The DNA migrates electrophoretically as a series of discrete bands, with specific genes present in only one or a few bands. The chromatin fragments are composed of nucleosomes and migrate electrophoretically in proportion to their DNA length. These results suggest schemes for the fractionation of undigested chromatin in order to enrich for specific genes, facilitating analysis of changes in chromatin structure associated with changes in gene expression.  相似文献   

10.
Co-isolated residual nuclear shells and residual nucleoli from membrane-depleted rat liver nuclei were spread according to Kleinschmidt's method. Comparison of the spread residual structures isolated from nuclear shells and spread pore complex-lamina isolated from nuclear envelopes showed that these residual structures are morphologically identical. Furthermore, our nuclear shell isolation procedure allowed visualization of DNA strands bound to a granular component of the lamina. The fragmentation of nuclear shells allowed us to obtain well-spread nucleolar remnants, in which we observed DNA strands anchored on a residual nucleolar network attached to the lamina. The different molecular features revealed by the spreading of residual nucleolar structures suggest that both non-transcribing nucleolar DNA and active ribosomal genes are linked to the nucleolar network. Although the exact nature of this network remains to be defined, the results of the present study strongly suggest that the DNA molecules of the chromosomes bearing ribosomal genes have many sites of attachment to a non-chromatin nucleolar network which can be referred to as a nucleolar skeletal complex.  相似文献   

11.
Localization of immunogenic tissue-specific proteins in chromatin regions, hypersensitive to endogenous nucleases, has been studied using rabbit antibodies against rat thymus chromatin. It is shown that the first 1–2,5% of the chromatin (calculating on DNA), released by Mg2+-, Mn2+-, and Ca2+/Mg2+-dependent nuclear endonucleases are drastically enriched in tissue-specific antigenic determinants. The released chromatin fractions are found to contain a heterogeneous set of nonhistone proteins and are deficient in histones. The cleavage of nuclear DNA by endogenous acidic nuclease, independent on bivalent ions, resulted in a significantly less enrichment of the released fractions with immunogenic proteins.  相似文献   

12.
Summary A major portion of the genomes of three millet species, namely, barn yard millet, fox tail millet and little millet has been shown to consist of interspersed repeat and single copy DNA sequences. The interspersed repetitive DNA sequences are both short (0.15–1.0 kilo base pairs, 62–64% and long (>1.5 kilo base pairs, 36–38%) in barn yard millet and little millet while in fox tail millet, only long interspersed repeats (>1.5 kilo base pairs) are present. The length of the interspersed single copy DNA sequences varies in the range of 1.6–2.6 kilo base pairs in all the three species. The repetitive duplexes isolated after renaturation of 1.5 kilo base pairs and 20 kilo base pairs long DNA fragments exhibit a high thermal stability with Tms either equal to or greater than the corresponding native DNAs. The S1 nuclease resistant repetitive DNA duplexes also are thermally stable and reveal the presence of only 1–2% sequence divergence.The present data on the modes of sequence arrangement in millets substantiates the proposed trend in plants, namely, plants with 1C nuclear DNA content of less than 5 picograms have diverse patterns of sequence organization while those with 1C nuclear DNA content greater than 5 picograms have predominantly a short period interspersion pattern.Abbreviations kbp kilobase pairs NCL Communication No. 3606.  相似文献   

13.
Summary Chromatin structure was studied in nuclei of the endosperm of durum wheat (Triticum durum Desf., cv. Creso), where a large number of cells undergo chromosome endoreduplication during caryopsis development. Optical density profiles of interphase nuclei at different ploidy levels after Feulgen staining were determined cytophotometrically. It was observed that, within each development stage, polyploid nuclei (6–12C and 12–24C) show more condensed chromatin than euploid nuclei (3–6C): this should indicate that endoreduplication is accompanied by some reduction of nuclear activity. Within the same ploidy level, 3–6C and 6–12C nuclei become increasingly condensed with development (except for the last stage), while 12-24C nuclei are identical at all stages. DNA methylation at different stages of caryopsis development was then analyzed in genomic DNA, highly repeated sequences and ribosomal DNA, by digestion with cytosine-methylation-sensitive restriction enzymes. We observed that (i), depending on the enzyme, DNA from caryopses may show higher mean length than DNA from shoot apices and variations occur during endosperm development; (ii) highly repeated DNA sequences also show some variation in base methylation between apices and endosperms and among endosperm development stages, even though to a lesser extent than genomic DNA; (iii) rDNA shows variations only between endosperm and apices while no variation was observed among endosperm development stages in relation to chromosome endoreduplication. Our data may be explained by assuming the occurrence, during endosperm development, of processes of chromatin condensation possibly involved in silencing the activity of extra copies of DNA resulting from chromosome endoreduplication. At least in part, DNA methylation is involved in the process of chromatin condensation. rDNA shows no variation during endosperm development: this suggests that rDNA copies are actively transcribed in both triploid and endoreduplicated nuclei.  相似文献   

14.
Human and mouse sperm nuclei obtained by sonication or mechanical agitation of freshly isolated sperm in the presence of anionic detergent were purified through a sucrose gradient and stained with acridine orange (AO); their fluorescence intensity was measured by flow cytometry. The green fluorescence, characteristic of AO binding to DNA by intercalation, was twice lower per unit of DNA for human sperm nuclei than for human peripheral blood lymphocytes. After extraction of basic proteins with 0.08 N HCl, AO binding to DNA increased 3.2-fold for lymphocytes and only 1.3-fold for sperm indicating that, in contrast to somatic cells, the proteins restricting AO binding to DNA are essentially non-extractable from sperm at that low pH. Treatment of human and mouse nuclei with dithiothreitol (DTT), a sulfhydryl reducing agent, and trypsin, removed constraints responsible for the restriction of AO binding. Specifically, as a result of DTT treatment alone there was up to a 20–30% increase of AO binding; upon subsequent addition of trypsin there was a further rapid rise in AO binding up to a final level of approximately 5 times the original AO binding to isolated sperm nuclei. Electron microscopy of DTT-treated human sperm nuclei showed that the reducing agent caused chromatin decondensation to a level whereby 20–30 Å diameter fibers interconnecting chromatin bodies about 30–75 nm in diameter were revealed. Trypsin digestion in the presence of DTT converted the chromatin bodies into a network of fibrous structures about 150 Å in diameter. Both electron microscopy and flow cytometry demonstrated an extremely large intercellular variation among human sperm nuclei in response to DTT and trypsin treatment indicating heterogeneity of chromatin structure. In contrast, AO staining of mouse sperm nuclei increased homogeneously in response to DTT and trypsin treatment.  相似文献   

15.
The tetrameric GINS complex, consisting of Sld5-Psf1-Psf2-Psf3, plays an essential role in the initiation and elongation steps of eukaryotic DNA replication, although its biochemical function is unclear. Here we investigate the function of GINS in fission yeast, using fusion of Psf1 and Psf2 subunits to a steroid hormone-binding domain (HBD) to make GINS function conditional on the presence of β-estradiol. We show that inactivation of Psf1-HBD causes a tight but rapidly reversible DNA replication arrest phenotype. Inactivation of Psf2-HBD similarly blocks premeiotic DNA replication and leads to loss of nuclear localization of another GINS subunit, Psf3. Inactivation of GINS has distinct effects on the replication origin association and chromatin binding of two of the replicative DNA polymerases. Inactivation of Psf1 leads to loss of chromatin binding of DNA polymerase ε, and Cdc45 is similarly affected. In contrast, chromatin association of the catalytic subunit of DNA polymerase α is not affected by defective GINS function. We suggest that GINS functions in a pathway that involves Cdc45 and is necessary for DNA polymerase ε chromatin binding, but that a separate pathway sets up the chromatin association of DNA polymerase α.  相似文献   

16.
In the interphase nucleus, the chromatin associated with the nuclear envelope is represented by a layer of anchorosomes, granules with a diameter of 20–25 nm. Biochemically, the fraction of chromatin directly associated with the nuclear envelope is characterized by resistance against decondensing influences, a low level of DNA methylation, and presence of specific acid-soluble proteins. However, the mechanisms lying at the base of chromatin-nuclear envelope interaction have been insufficiently studied. Specifically, it is unknown whether anchorosomes are constant structures or subject to reversible disassembly, when the contacts between chromatin and nuclear envelope are destroyed. We obtained immune serum recognizing a 68 kDa protein from the nuclear envelopes fraction and studied the localization of this protein in interphase and mitotic cells. We show that this protein, present in the NE/anchorosomal fraction, does not remain bound with chromosomes during mitosis. It dissociates from chromosomes at the beginning of the prophase and then can be identified again at the periphery of the newly forming nuclei in the telophase.  相似文献   

17.
Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-ACnp1 kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase α (Polα) accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-ACnp1 in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7+, which encodes a catalytic subunit of Polα. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Polα. These results suggest that Mcl1 and Polα are required for propagation of centromere chromatin structures during DNA replication.  相似文献   

18.
19.
20.
In spermiogenesis, spermatid differentiation is marked by dramatic changes in chromatin density and composition. The extreme condensation of the spermatid nucleus is characterized by an exchange of histones to transition proteins and then to protamines as the major nuclear proteins. Alterations in DNA topology that occur in this process have been shown to require the controlled formation of DNA strand breaks. Poly(ADP-ribosyl)ation is a posttranslational modification of proteins mediated by a family of poly(ADP-ribose) polymerase (PARP) proteins, and two family members, PARP-1 and PARP-2, are activated by DNA strand breaks that are directly detected by the DNA-binding domains of these enzymes. Here, we show for the first time that poly(ADP-ribose) formation, mediated by poly(ADP-ribose) polymerases (PARP-1 and presumably PARP-2), occurs in spermatids of steps 11–14, steps that immediately precede the most pronounced phase of chromatin condensation in spermiogenesis. High levels of ADP-ribose polymer were observed in spermatid steps 12–13 in which the highest rates of chromatin nucleoprotein exchanges take place. We also detected -H2AX, indicating the presence of DNA double-strand breaks during the same steps. Thus, we hypothesize that transient ADP-ribose polymer formation may facilitate DNA strand break management during the chromatin remodeling steps of sperm cell maturation.M.L. Meyer-Ficca and H. Scherthan contributed equally to this work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号