共查询到20条相似文献,搜索用时 0 毫秒
1.
We compared several Na,K-ATPase preparations from various organs of the rat. The brain Na,K-ATPase differed from the enzymes of other organs in its pH dependence and responses to ouabain and N-ethylmaleimide in spite of similarities in the kinetic parameters of activation by Na+, K+, Mg2+, and ATP. The optimum pH of the brain MaI-enzyme was at 7.4 to 7.5 at 37 degrees D. The Lubrol extract of this brain enzyme preparation showed a lower optimum oH of 6.6. When the Lubrol extract of the brain was fractionated wtih (NH4)2SO4, the activity of the precipitate in the neutral pH region was restored. On the other hand, the optimum pH of the kidney NaI-enzyme was slightly affected by Lubrol and ammonium sulfate treatments (pH 7.5 leads to 7.3). The brain enzyme (K 1/2 = 0.9 microM) showed about 100-fold higher sensitivity to ouabain than the enzymes from other organs (I 1/2 = 100 microM) in the presence of 120 mM Na+ and 10 mM K+. In a Hill plot of the ouabain inhibition, the former failed to give a linear relationship, while the latter gave a straight line with a Hill coefficient of 1.0. The effect of K4 on the brain enzyme-ouabain interaction led us to consider that the brain enzyme might have two components as regards ouabain affinity, high and low affinity components. The time course of N-ethylmaleimide inhibition of the brain enzyme was rapid and biphasic, while the kidney enzyme showed only a slow phase following pseudo-first order kinetics. ATP protected the kidney enzyme activity completely agai,st N-ethylmaleimide inhibition, but the protection of the brain enzyme activity by ATP was only partial. We divided rat Na,K-ATPases into two groups, the brain type, which is restricted to the central nervous system, and the kidney type, which is found in most organs. 相似文献
2.
3.
The relative effectiveness of the ligands Mg2+, Na+, and ATP in preparing sodium plus potassium ion transport adenosine triphosphatase for phosphorylation was studied by means of a rapid mixing apparatus. Addition of 2 mM MgC12, 120 mM NaC1, and 5 muM [gamma-32P]ATP simultaneously to the free enzyme gave an initial phosphorylation rate of about 0.3 mu mol-mg-1-min-1 at 25 degrees and pH7.4. Addition of Mg2+ to the enzyme beforehand, separately or in combination with Na+ or ATP, had little effect on the initial rate. Addition of Na+ only to the enzyme beforehand increased this rate 1.5- to 3-fold. Early addition of ATP 130 ms before Na+ plus Mg2+ increased the rate 6- to 7-fold. Early addition of Na+ plus ATP was most effective; it increased the rate about 10-fold. The data indicate that Na+ and ATP bind in a random order and that each ligand potentiates the effect of the other. The rate of dissociation of ATP from the enzyme was estimated by a chase of unlabeled ATP of variable duration. This rate was slowest in the presence of Mg2+ (k = 540 min-1), most rapid in the presence of Na+ (k = 2000 min-1), and intermediate (k = 1100 min-1) in the absence of metal ions. The effect of Na+ concentration on the rate of phosphorylation was estimated when Na+ with Mg2+ was added to the enzyme-ATP complex. The rate followed Michaelis-Menten kinetics with a maximum of 2.9 mu mol-mg-1 and a Km of 8 mM. The effect of Na+ concentration was also estimated on the increment in the rate of phosphorylation produced by the presence of Na+ with the enzyme-ATP complex beforehand. The increment followed the same kinetics with a maximum of 3.75 mu mol-mg-1-min-1 and a Km of 5.4 mM. In both cases estimation of the Hill coefficient failed to show cooperativity between binding sites for Na+. In contrast, the dependence of ouabain-sensitive ATPase activity on Na+ concentration in the absence of K+ indicated two sites for Na+ with apparent Km values of 0.16 and 8.1 mM, respectively. 相似文献
4.
The rate of phosphorylation of sodium and potassium ion-transport adenosine triphosphatase by 10 microM [gamma-32P]ATP was much slower with Ca2+ than with Mg2+ (0.13-10 mM) in the presence of 16 to 960 mM Na+ at 0 degrees C and pH 7.4. In the presence of a fixed concentration of Mg2+ or Ca2+, the rate became slower with increasing Na+ concentration. When the Na+ concentration was fixed, the rate became slower with decreasing divalent cation concentration. Sodium ions appear to antagonize the divalent cation in the phosphorylation to slow its rate. In the presence of 1 mM Ca2+ and 126 or 270 mM Na+, the rate was slow enough to permit the manual addition of a chasing solution at various times before the phosphorylation reached the steady state. Therefore, we studied the time-dependent change of the sensitivity to ADP or to K+ of the phosphoenzyme by a chase with unlabeled ATP containing ADP or K+ during the time range from the transient to the steady state of the phosphorylation. The ADP sensitivity decreased and the K+ sensitivity increased with the progress of the phosphorylation. With 270 mM Na+, the phosphoenzyme found at 1 s, when its amount was 5.5% of the maximum level, was virtually completely sensitive to ADP. Under these conditions, it was concluded that the form of the phosphoenzyme initially produced from the enzyme.ATP complex has ADP sensitivity and that the phosphoenzyme acquires K+ sensitivity later. The initially produced ADP-sensitive phosphoenzyme partially lost its normal instability and sensitivity upon adding a chelating agent, probably because of dissociation of a divalent cation from the phosphoenzyme. 相似文献
5.
《Insect Biochemistry》1976,6(6):561-566
The properties are described of a solubilised Na+- and K+-dependent ATPase prepared from frozen housefly heads. The affinity for ATP and the requirements for Na+, K+, and Mg2+ of the flyhead enzyme are similar to those of other animal Na+- and K+-dependent ATPases. Ouabain appears to inhibit the insect enzyme by interaction at the K+-binding site in a non-competitive manner.The solubilised ATPase contained a p-nitrophenylphosphatase activity which showed a requirement for K+ and Mg2+ and which was inhibited by ouabain. 相似文献
6.
Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics. 总被引:2,自引:1,他引:2 下载免费PDF全文
1. A substantial increase of the initial rate of ATP hydrolysis was observed after preincubation of bovine heart submitochondrial particles with phosphoenolpyruvate and pyruvate kinase. 2. The activation was accompanied by an increase of Vmax, without change of Km for ATP. 3. The activated particles catalysed the biphasic hydrolysis of ATP in the presence of an ATP-regenerating system; the initial rapid phase was followed by a second, slower, phase in a time-dependent fashion. 4. The higher the ATP concentration used as a substrate, the higher is the rate of transition between these two phases. 5. The particles catalysed the hydrolysis of ITP with a lag phase; after preincubation with phosphoenolpyruvate and pyruvate kinase, ITP was hydrolysed at a constant rate. 6. Qualitatively the same phenomena were observed when soluble mitochondrial ATPase (F1-ATPase) prepared by the conventional method in the presence of ATP was used as nucleotide triphosphatase. 7. A kinetic scheme is proposed, in which the intermediate active enzyme-product complex (E.ADP) formed during ATP hydrolysis is in slow equilibrium with the inactive E*.ADP complex forming as a result of dislocation of ADP from the active site of ATPase to the other site, which is not in rapid equilibrium with the surrounding medium. 相似文献
7.
Properties of the two polypeptides of sodium- and potassium-dependent adenosine triphosphatase 总被引:17,自引:0,他引:17
J Kyte 《The Journal of biological chemistry》1972,247(23):7642-7649
8.
In order to study the action of the divalent cation which is essential for phosphorylation of sodium- and potassium-transport adenosine triphosphatase, magnesium ion, the normal ligand, was replaced with calcium ion, which had properties diffeerent from those of Mg2+, Mn2+, Fe2+, Co2+, Ni2+, or Zn2+. Phosphorylation of the enzyme from ATP at pH 7.4 in the presence of Na+ and Ca2+ yielded a Ca.phosphoenzyme (60% of the maximal level) with a normal rate of dephosphorylation following a chase with unlabeled Ca.ATP (PK = 0.092S-1 at 0 degrees C). In contrast, after a chase by a chelator, namely ethylenediaminetetraacetic acid, 1,2-cyclohexylenedinitrilotetraacetic acid, or ethylene glycol bis-(beta-aminoethyl ether)N,N'-tetraacetic acid, dephosphorylation slowed within 5 s and half of the initial phosphoenzyme remained with a stability about 5-fold greater than normal. Three states of the phosphoenzyme were distinguished according to their relative sensitivity to ADP or to K+ added during a chase. Normally prepared Mg.phosphoenzyme was sensitive to K+ but not to ADP; Ca.phosphoenzyme was sensitive either to ADP or to K+; and the stabilized phosphoenzyme prepared from Ca.phosphoenzyme by addition of a chelator was sensitive neither to ADP nor to K+ nor to both together. Addition of Ca2+ to the stabilized phosphoenzyme restored the reactivity to that of Ca.phosphoenzyme. Addition of Mg2+ to the stabilized phosphoenzyme changed the reactivity to that of Mg.phosphoenzyme. Therefore, this unreactive, stabilized state of the phosphoenzyme appeared to be a divalent cation-free phosphoenzyme. With respect to sensitivity to ouabain, Ca.phosphoenzyme was as sensitive as Mg.phosphoenzyme but calcium-free phosphoenzyme was much less sensitive. It was concluded that the divalent cation required for phosphorylation normally remains tightly bound to the phosphoenzyme and is required for normal reactivity. Calcium ion was almost unique in dissociating relatively easily from the phosphoenzyme. Strontium ion appeared to act similarly to Ca2+. 相似文献
9.
Purification of the sodium- and potassium-dependent adenosine triphosphatase from canine renal medulla 总被引:17,自引:0,他引:17
J Kyte 《The Journal of biological chemistry》1971,246(13):4157-4165
10.
Energetics and mechanism of actomyosin adenosine triphosphatase. 总被引:17,自引:0,他引:17
Rate constants were determined for the reaction of actin with subfragment 1 (S1), S1-product complex, heavy meromyosin (HMM), and HMM-products complex for a range of temperatures, pH's, and ionic strengths. For actin concentrations up to 10 muM, the rate of reassociation of the product intermediate was equal to the rate of actomyosin subfragment 1 (acto-S1) or acto-HMM adenosine triphosphatase (ATPase). Therefore, under these conditions, the only important pathway for adenosine triphosphate hydrolysis is through the dissociation and recombination of S1 or HMM. The apparent rate constants for the association of S1 and S1-product with actin showed a similar large ionic strength dependence. The S1-product reaction had a large temperature dependence paralleling the rate of acto-S1 ATPase, while the reaction with S1 had a much smaller variation with temperature. The low value of the rate constant for the S1-product reaction and its relationship to the s1 areaction suggests that the apparent rate constant does not measure a simple second-order reaction. A plausible mechanism is a rapid equilibrium for the binding step, followed by a transition (product release) which increases the association constant. A refractory state could also reduce the apparent rate constant of recombination. An approximate assignment of equilibrium constants for the acto-S1 ATPase reaction was made based on the interpretation of the present evidence and equilibrium constnats for the S1 ATPase. 相似文献
11.
The stability of the sodium- and potassium-activated adenosinetriphosphatase (Na,K-ATPase) of the electric eel, Electrophorus electricus, was studied in five detergents in an effort to establish conditions for reconstitution of this membrane protein into defined phospholipids. The Na,K-ATPase activity of purified electric organ membranes as well as the ATPase is stable for at least 1 month of storage at 0 degrees C in the absence of detergents. At low concentrations of detergents, the enzyme is also stable for several days, but irreversible inactivation occurs rapidly as the detergent concentration is further increased. This inactivation begins at well-defined threshold concentrations for each detergent, and these concentrations generally occur in the order of the detergent critical micelle concentrations. Increasing the concentration of the electric organ membranes causes a linear increase in the inactivation threshold concentrations of Lubrol WX, deoxycholate, and cholate. The onset of inactivation evidently occurs when the mole fraction of detergent associated with the membrane lipids reaches a critical value in the narrow range of 0.2-0.4, in contrast to the large differences in the bulk concentrations of these detergents. The eel Na,K-ATPase is more sensitive to detergents than the sheep kidney enzyme. 相似文献
12.
13.
Recognition of sodium- and potassium-dependent adenosine triphosphatase in organs of the mouse by means of a monoclonal antibody 总被引:1,自引:0,他引:1
Gorvel Jean-Pierre Liabeuf Andre Massey Dominique Liot Didier Goridis Christo Maroux Suzanne 《Cell and tissue research》1983,234(3):619-632
The antigen detected by the rat anti-mouse monoclonal antibody (m Ab), anti-BSP-3, has been initially described as a brain cell-surface protein. Evidence is presented that this m Ab recognizes mouse (Na+ + K+)-ATPase (ATP phosphohydrolase, E.C.3.6.1.3). The antigen, purified from mouse brain by means of affinity chromatography, migrated in SDS-polyacrylamide gels in the form of two polypeptide chains of 100 000 and 48 000 molecular weight, which could be shown to react with subunit-specific polyclonal antisera against ATPase in immunoblotting experiments. Purified BSP-3 antigen was bound to the specific (Na+ + K+)-ATPase inhibitor ouabain. Finally, the anti-BSP-3 m Ab was capable of immunoprecipitating the ATPase activity of a microsomal fraction from mouse kidney. The m Ab was used to study the localization of (Na+ + K+)-ATPase in different organs of the mouse. It stained the basolateral plasma membranes of polarized cells in immunofluorescence experiments, while the entire cell surface of unpolarized cells was labeled. Interestingly, several cell types did not react with the m Ab, indicating a possible heterogeneity of ATPases. Such a m Ab could prove to be a useful tool for studying localization, structure and function of (Na+ + K+)-ATPase. 相似文献
14.
15.
Recognition of sodium- and potassium-dependent adenosine triphosphatase on mouse lymphoid cells by means of a monoclonal antibody 总被引:3,自引:0,他引:3
Summary Previous evidence has established the similarity between (Na++K+)-ATPase (ATP phosphohydrolase, EC.3.6.1.3) and the antigen recognized by the rat antimouse monoclonal antibody anti-BSP-3. This antibody has been used for investigation of the surface expression and biochemical analysis of the enzyme in different mouse lymphoid populations. The BSP-3 determinant is found on almost all thymocytes and concanavalin A-induced thymocytes, to a lesser extent on bone marrow cells and also on a minor population of spleen cells. Spleen cells from athymic mice are negative. The (Na++ K+)-ATPase purified from mouse thymus by affinity chromatography migrates in SDS-polyacrylamide gels in the form of two polypeptide chains of 105000 and 51000 daltons. Chains of the same molecular weight, fractionated on SDS-PAGE from microsomes of mouse thymuses, are shown to react with subunit-specific polyclonal antisera against ATPase in immunoblotting experiments. Immunoprecipitation with anti-BSP-3 from surface iodinated thymocytes yields only the small subunit. Comparison of the chains isolated from thymus and brain shows molecular weight differences in both subunits. These results, and variations in the reactivity pattern of the anti-BSP-3 antibody on several cell types, may indicate a possible heterogeneity of the (Na++K+)ATPase expressed by various tissues and cells. 相似文献
16.
Role of phospholipid in the intermediate steps of the sodium-plus-potassium ion-dependent adenosine triphosphatase reaction. 下载免费PDF全文
K P Wheeler 《The Biochemical journal》1975,146(3):729-738
The phosphorylation and dephosphorylation steps of the (Na-++K-+)-dependent ATPase (adenosine triphosphatase) (EC 3.6.1.3) reaction have been compared in 'normal', lipid-depleted and 'restored' membrane ATPase preparations. Partial lipid depletion was achieved by a single extraction with Lubrol W, and 'restoration' by adding pure phosphatidylserine. Gamma-32-P-labelled ATP was used for phosphorylation. The main findings were as follows. (1) Partial lipid depletion decreased but did not prevent Na-+-dependent phosphorylation, although it virtually abolished both Na-+-dependent and (Na-++K-+)-dependent ATPase activities. (2) 'Restoration' with phosphatidylserine produced an increment in phosphorylation that was the same in the presence and absence of added Na-+. (3) K-+ decreased the extent of Na-+-dependent phosphorylation of the depleted enzyme without producing a corresponding release of Pi. (4) K-+ rapidly decreased the extent of phosphorylation of the 'restored' enzyme to near-background value, with a concomitant release of Pi. (5) Na-+-dependent ATP hydrolysis was not restored. (6) The turnover of the 'restored' enzyme seemed to be higher than that of the 'normal' enzyme. The reaction sequence is discussed in relation to these results and the fact that the depleted enzyme retained about 50% of K-+-dependent phosphatase activity. 相似文献
17.
K Taniguchi K Suzuki D Kai I Matsuoka K Tomita S Iida 《The Journal of biological chemistry》1984,259(24):15228-15233
The addition of ATP with K+ to pig kidney Na+,K+-ATPase (EC 3.6.1.3) modified with a sulfhydryl fluorescent reagent N-[p-(2-benzimidazolyl)phenyl]maleimide induced a transient decrease (t 1/2 = 0.01 s) in the fluorescence in the presence of Mg2+ with 0.64 M Na+, followed by a slow increase (t 1/2 = 0.08 s), to give a higher steady level than that observed without K+. The addition induced a transient increase (t 1/2 less than 0.02 s) in the amount of phosphoenzyme, followed by a slow decrease (t 1/2 = 0.08 s), but the addition without K+ induced a monophasic increase (t 1/2 = 0.02 s). The addition of ATP in the presence of 2 M Na+ with Ca2+ induced a monophasic decrease (t 1/2 = 0.1 s) in the fluorescence along with a much slower increase (t 1/2 = 1.2 s) in the amount of phosphoenzyme. No significant burst of acid-labile phosphate was observed. The data showed clearly the accumulation of the enzyme-ATP complex preceding the phosphoenzyme formation. Fluorescence intensity of these enzyme species and the amount of phosphoenzyme permitted the simulation using the reaction mechanism including enzyme-ATP complex, ADP-sensitive phosphoenzyme, K+-sensitive phosphoenzyme, and K+-bound enzyme. The simulation gave a good fit to the experimental data which showed that ATP is hydrolyzed in sequence through the above intermediates in the presence of both Na+ and K+. 相似文献
18.
Kodavanti S. Prasada Rao Sreeramulu C. Chetty Durisala Desaiah 《Journal of biochemical and molecular toxicology》1987,2(2):125-140
Tricyclohexylhydroxytin, commonly known as Plictran® inhibited Na+, K+ -ATPase activity of rat brain synaptosomes in a concentration-dependent manner with median inhibitory concentration (IC-50) of 2 μM. Both K+ -stimulated para-nitrophenylphosphatase and [3-H]-ouabain binding to synaptosomes were also inhibited by Plictran with IC-50 values of 11 and 30 μM, respectively. Altered pH and Na+, K+ -ATPase activity curves demonstrated comparable inhibition in buffered neutral and alkaline pH ranges, and no inhibition was observed in acidic pH. The inhibition of Na+, K+ -ATPase was independent of temperature. Kinetic studies of substrate (ATP) activation of Na+, K+ -ATPase indicated uncompetitive inhibition. Results also showed noncompetitive inhibition for p-nitrophenylphosphate and uncompetitive inhibition for K+ activations of p-nitrophenylphosphatase. Preincubation of synaptosomes with dithiothreitol, a sulfhydryl (SH) agent, resulted in the complete protection of Plictran inhibition of Na+, K+ -ATPase, K+ -para-nitrophenylphosphatase, and [3-H]-ouabain binding. The protection was specific and concentration dependent since cysteine and glutathione did not afford protection. These results indicate that Plictran inhibited Na+, K+ -ATPase by interacting with dephosphorylation of the enzyme-phosphoryl complex and exerted a similar effect to that of SH-blocking agents. 相似文献
19.