共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ABA on root growth, secondary-root formation androot gravitropism in seedlings of Zea mays was investigatedby using Fluridone-treated seedlings and a viviparous mutant,both of which lack carotenoids and ABA. Primary roots of seedlingsgrown in the presence of Fluridone grew significantly slowerthan those of control (i.e. untreated) roots. Elongation ofFluridone-treated roots was inhibited significantly by the exogenousapplication of 1 mM ABA. Exogenous application of 1 µMand 1 nM ABA had either no effect or only a slight stimulatoryeffect on root elongation, depending on the method of application.The absence of ABA in Fluridone-treated plants was not an importantfactor in secondary-root formation in seedlings less than 910d old. However, ABA may suppress secondary-root formation inolder seedlings, since 11-d-old control seedlings had significantlyfewer secondary roots than Fluridone-treated seedlings. Rootsof Fluridone-treated and control seedlings were graviresponsive.Similar data were obtained for vp-9 mutants of Z. mays, whichare phenotypically identical to Fluridone-treated seedlings.These results indicate that ABA is necessary for neither secondary-rootformation nor for positive gravitropism by primary roots. Zea mays, gravitropism, carotenoid-deficient, Fluridone, root growth, vp-9 mutant 相似文献
2.
Starch occupies 4.2 per cent of the volume of plastids in calyptrogencells in primary roots of Zea mays L. cv. vp-7 wild type. Plastidsin calyptrogen cells are distributed randomly around large,centrally located nuclei. The differentiation of calyptrogencells into columella cells is characterized by cellular enlargementand the sedimentation of plastids to the bottom of the cells.Although sedimented plastids in columella cells do not containsignificantly more starch than those in calyptrogen cells, primaryroots are graviresponsive. The onset of root gravicurvatureis not associated with a significant change in the distributionof plastids in columella cells. These results indicate thatin this cultivar of Z. mays (1) the sedimentation of plastidsin columella cells is not based upon their increased densityresulting from increased starch content alone, (2) starch-ladenamyloplasts need not be present in columella cells for rootsto be graviresponsive, and (3) the onset of root gravicurvaturedoes not require a major redistribution of plastids in columellacells. Columella cell, gravitropism (root), plastids, root cap, Zea mays 相似文献
3.
We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage. 相似文献
4.
Growth and Graviresponsiveness of Primary Roots of Zea mays Seedlings Deficient in Abscisic Acid and Gibberellic Acid 总被引:1,自引:0,他引:1
Moore, R. and Dickey, K. 1985. Growth and graviresponsivenessof primary roots of Zea mays seedlings deficient in abscisicacid and gibberellic acid.J. exp. Bot. 36: 17931798. The objective of this research was to determine if gibberellicacid (GA) and/or abscisic acid (ABA) are necessary for graviresponsivenessby primary roots of Zea mays. To accomplish this objective wemeasured the growth and graviresponsiveness of primary rootsof seedlings in which the synthesis of ABA and GA was inhibitedcollectively and individually by genetic and chemical means.Roots of seedlings treated with Fluridone (an inhibitor of ABAbiosynthesis) and Ancymidol (an inhibitor of GA biosynthesis)were characterized by slower growth rates but not significantlydifferent gravicurvatures as compared to untreated controls.Gravicurvatures of primary roots of d-5 mutants (having undetectablelevels of GA) and vp-9 mutants (having undetectable levels ofABA) were not significantly different from those of wild-typeseedlings. Roots of seedlings in which the biosynthesis of ABAand GA was collectively inhibited were characterized by gravicurvaturesnot significantly different from those of controls. These results(1) indicate that drastic reductions in the amount of ABA andGA in Z. mays seedlings do not significantly alter root graviresponsiveness,(2) suggest that neither ABA nor GA is necessary for root gravicurvature,and (3) indicate that root gravicurvature is not necessarilyproportional to root elongation. Key words: Abscisic acid, Ancymidol, Fluridone, gibberellic acid, root gravitropism, Zea mays 相似文献
5.
Calcium Movement, Graviresponsiveness and the Structure of Columella Cells and Columella Tissues in Roots of Allium cepa L. 总被引:1,自引:0,他引:1
Roots of Allium cepa L. cv. Yellow are differentially responsiveto gravity. Long (e.g. 40 mm) roots are strongly graviresponsive,while short (e.g. 4 mm) roots are minimally responsive to gravity.Although columella cells of graviresponsive roots are largerthan those of nongraviresponsive roots, they partition theirvolumes to cellular organelles similarly. The movement of amyloplastsand nuclei in columella cells of horizontally-oriented rootscorrelates positively with the onset of gravicurvature. Furthermore,there is no significant difference in the rates of organellarredistribution when graviresponsive and nongraviresponsive rootsare oriented horizontally. The more pronounced graviresponsivenessof longer roots correlates positively with (1) their caps being9.6 times more voluminous, (2) their columella tissues being42 times more voluminous, (3) their caps having 15 times morecolumella cells, and (4) their columella tissues having relativevolumes 4·4 times larger than those of shorter, nongraviresponsiveroots. Graviresponsive roots that are oriented horizontallyare characterized by a strongly polar movement of 45Ca2+ acrossthe root tip from the upper to the lower side, while similarlyoriented nongraviresponsive roots exhibit only a minimal polartransport of 45Ca2+. These results indicate that the differentialgraviresponsiveness of roots of A. cepa is probably not dueto either (1) ultrastructural differences in their columellacells, or (2) differences in the rates of organellar redistributionwhen roots are oriented horizontally. Rather, these resultsindicate that graviresponsiveness may require an extensive columellatissue, which, in turn, may be necessary for polar movementof 45Ca2+ across the root tip. Allium cepa, onion, root, columella tissue, columella cell, gravitropism, calcium, ultrastructure 相似文献
6.
The exudation rates of fluid and potassium ions from isolatedmaize roots were determined before and after excision of certainlengths of root tip. The results of this study suggest thatexcised maize roots possess the ability to absorb potassium(and presumably chloride) ions and concomitant amounts of waterover a considerable distance (10 cm) from the tip. Moreover,the observed power of absorption of ions and water into thetranslocatory pathway decreases in passing from the tip towardsthe base of the root. Both light and electron microscope techniques were used to examinethe anatomy of primary roots similar to those used in the physiologicalexperiments. The principal observation was that the xylem vesselsnear the root tip contain membrane-bounded cytoplasm with organelles.The number of mature xylem vessels, i.e. without cytoplasm,progressively increased in transverse sections cut from 1 to10 cm from the root tip; above 10 cm from the root tip all ofthe xylem vessels were found to be completely mature. It isevident that prima facie a connexion exists between this singleaspect of root anatomy and fluid exudation from excised roots. The uptake of tritiated water by roots and its transport intoexudates was examined. These data were analysed on the assumptionthat the exchange of external labelled water with the exudatewas achieved by the fluid exudation itself; this analysis indicatedthat an operational volume, similar to that of the total xylemvolume within the root, must become labelled during the formationof the exudate. 相似文献
7.
Evidence obtained from incubation of corn (Zea mays cv. Golden Bantam) seedlings in dl-[benzene ring-U-(14)C]tryptophan, l-[5-(3)H]tryptophan, l-[U-(14)C]aspartate and [U-(14)C]glycerol indicates that niacin is synthesized in these plants via oxidative degradation of tryptophan. Aspartate and glycerol do not appear to be precursors of niacin in corn seedlings. 相似文献
8.
Experimental Modification of Cell Division Patterns in the Root Meristem of Zea mays 总被引:1,自引:0,他引:1
In the meristem of the young primary root of maize seedlingsthe first transverse division in the cortex 250 µm fromthe root apex results in two daughter cells of distinctly unequalsize. This division could be rendered equal by raising the seedlingsin up to 7.5% methanol. The pattern of the subsequent two orthree transverse divisions in the cortex, as revealed by thearrangement of the newly divided cells in the resultant cellularpackets, was acropetal in the methanol-treated roots but basipetalin the control roots. The sequence of division within a cellularpacket tended to follow the distribution of cell sizes - largercells divided earlier than smaller cells. A temporary arrestof cell division by exposing roots to cold (5 °C) conditionshad no effect on the sequence of divisions that followed whenthe roots were allowed to recover at 20 °C. The resultssuggest that the normally asymmetric position of the cell wallformed at cytokinesis is subject to active regulation and thatmethanol interferes with this process. The cytoplasm of certaincells in the root meristem was also found to be unequally distributed,as judged by Azure B staining, between the two ends of the cell.Cytoplasmic asymmetry was not directly correlated with inequalityof division, although it too was affected by methanol. Cell polarity, root meristem, unequal division, Zea mays 相似文献
9.
The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g–1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g–1 FW,±standard deviation): w-3, 279±43; vp-5, 237±26; vp-7, 338±61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necesary for positive gravitropism by primary roots of Z. mays.Abbreviation ABA
abscisic acid 相似文献
10.
NaCl Uptake in Roots of Zea mays Seedlings: Comparison of Root Pressure Probe and EDX Data 总被引:1,自引:0,他引:1
The extent by which salinity affects plant growth depends partlyon the ability of the plant to exclude NaCl. To study the uptakeof NaCl into excised roots of Zea mays L. cv. Tanker,two different techniques were applied. A root pressure probewas used to record steady state as well as transient valuesof root (xylem) pressure upon exposure of the root to mediacontaining NaCl and KCl as osmotic solutes. In treatments withNaCl, pressure/time responses of the root indicated a significantuptake of NaCl into the xylem. NaCl induced kinetics were completelyreversible when the NaCl solution was replaced by an isosmoticKCl solution. This indicated a passive movement of Na+-saltsacross the root cylinder. Root samples were taken at differenttimes of exposure to NaCl and prepared for X-ray microanalysis(EDX analysis). Radial profiles of ion concentrations (Na+,K+, Cl) were measured in cell vacuoles and xylem vesselsalong the root axis. Na+ appeared rapidly in mature xylem (earlymetaxylem) and living xylem (late metaxylem) before it was detectablein vacuoles of the root cortex. EDX results confirmed that thekinetics observed by the pressure probe technique correspondedmainly to an influx of Na+-salts into early metaxylem. In latemetaxylem, the uptake of Na+ was associated with a decline ofK+. The Na+/K+ exchange indicated a mechanism to reduce sodiumfrom the transpiration stream. Ion localization, ion transport, maize, root pressure, salinity, water relations, X-ray microanalysis, Zea mays 相似文献
11.
Nuclear volumes and cell areas were determined for seven regionsof the meristem of roots of Zea mays. Roots were fixed in 10per cent neutral buffered formalin, in 3 per cent glutaraldehydeor in acetic acid/alcohol; they were prepared as sections oralls were teased apart. Mean volumes of interphase nuclei weresimilar in all regions of the root except the vascular tissueof the stele. Mean nuclear volumes and the overall range ofvolumes were similar in sub-populations of cells with differentproportions of G1, S and G2 cells, e.g. in row I of root capinitials, whose cells lack a G1 phase, and in quiescent centrecells, which are mainly in G1. Nuclear volume does not appearto be closely correlated with DNA content. Nuclear volumes covereda 6 to 12-fold range within a meristem and even within specificregions, in which cells are part of the same cell lineages,there was a 4- to 9-fold range. Nuclear volumes were comparedin sister cells in rows I and II of the root cap initials. In10 per cent of the pairs, sister nuclei had identical volumes;the other pain had different volumes and mean difference was68 µm3. Mechanisms by which this variability could begenerated are discussed, particularly asymmetry, at mitoses,of factors that regulate nuclear growth. Zea mays L., nuclear volume, cell size, root mcristem, DNA content, mitosis 相似文献
12.
13.
Anthocyanin production was impaired in both roots and shootsof Zea mays seedlings germinated on 1 and 2 mM concentrationsof four barbiturates having different lipid/aqueous partitioncoefficients. The severity of impaired anthocyanin productionwas greater in those seedlings treated with the higher lipidsoluble barbiturates irrespective of the concentrations used.Indirect evidence is presented which indicates that barbituratesinterfere with normal membrane physiology responsible for anthocyaninproduction. Anthocyanin, barbiturate, seedlings, Zea mays 相似文献
14.
The objectives of this investigation were to determine: (a)the general effect of temperature on internal root anatomy;(b) whether genotypic differences in such root traits exist;and (c) the association between internal root traits and shootgrowth, lateral root branching and cold tolerance of maize (Zeamays L.). Seedlings of 20 central European hybrids were grownunder high or low temperature (25/22·5 °C or 15/12·5°C day/night temperatures) until the third leaf was fullyexpanded. Light microscopy of cross sections revealed a largerdiameter of primary roots at low temperature which was due toa larger stele diameter and a thickening of the cortex. Concurrently,an increase in total cross sectional area of metaxylem elementswas obtained. It is assumed that the modification of the internalroot structure by temperature has an effect on both axial andradial water flow capacity. For all anatomical traits studied,variability between genotypes was apparent under both growingconditions. Furthermore, different genotypic responses to temperaturewere observed. However, basic differences between cold-tolerantand cold-sensitive genotypes did not exist. While at high temperatureroot traits and shoot growth were significantly and positivelycorrelated, at low temperature the correlation coefficient wasinsignificant. Consequently, it was not possible to characterizethe performance of the shoot at low temperature based on anatomicaltraits of the root. Moderate, positive correlation coefficientswere obtained between internal root traits and lateral rootbranching. The potential use of root anatomical traits as indirectselection criteria is discussed. Chilling tolerance, genotypes, root anatomy, Zea mays L 相似文献
15.
The rate of RNA synthesis in eight regions of the root apexof Zea mays has been determined. Cells of the quiescent centrehave a lower level of RNA synthesis than any other region studied.The level of RNA synthesis appears to be a function of the positionof the cell in the apex. All the newly synthesized RNA detectedin chromatin and cytoplasm can be accounted for by synthesisin the nucleolus and subsequent transport to these compartments.Newly synthesized RNA appears in the three compartments at differentrates depending on the location of the cell. 相似文献
16.
Primary roots of Ricinus communis having large caps and columellatissues are more graviresponsive than primary roots with smallcaps and columella tissues. The increased graviresponsivenessof roots with larger caps correlates positively with their columellatissues having larger length: width ratios than less graviresponsiveroots having smaller caps. Roots with wider tips typically aremore graviresponsive and have more extensive columellas thanroots with thinner tips. However, the size of the columellatissue correlates positively with graviresponsiveness, irrespectiveof the width of the root tip. These results indicate that differingdimensions of the columella tissue may be the basis for thediffering graviresponses of primary roots of R. communis. Root gravitropism, columella, root cap, primary root, Ricinus communis, castor bean 相似文献
17.
A micro-assay based on the growth inhibition of root segmentsof the seminal roots of Zea mays has been used to investigatethe root-growth-inhibiting substances in root caps and meristemsrespectively of the roots of Zea mays. This micro-assay is sensitiveto 50 pg of IAA or less. Paper chromatography of the acid fractionof methanolic extracts shows the presence of one main inhibitorin root caps and a different main inhibitor in root meristems.Neither is IAA, whose presence in meristems is sometimes indicatedby small inhibitions (or stimulations) at the characteristicRf of IAA. A Commelina leaf-epidermis assay shows the presenceof one stomata-closing ABA-like substance in root caps and onein meristems, one corresponding in Rf to the main root-growthinhibitor from the root cap. The implications of these findingsfor the geotropic responses of roots is briefly discussed. 相似文献
18.
The imposition of a polyethylene glycol-induced osmotic stressof 1.5 MPa for 48 h on 28 d old Zea mays (cv. Style Pak)seedlings resulted in a 44% decreased stem dry weight and increasedtriglyceride levels in stem and leaf tissues; increased sterylester levels also occurred in stems. The magnitude of theseincreases was such that, on a dry weight basis, there were increasedtotal triglyceride and steryl ester levels in the seedlingsafter the 48 h applied stress. In stems the increased triglyceridelevel was evident in all of the component fatty acids examined,whereas in leaves it was associated mainly with one fatty acidcomponent, viz. linolenic acid (C18: 3). Changes in sterol levels were small but significant and largelyrestricted to the stem. Proline levels of all three tissuesincreased in response to water-stressing the seedlings and thegreatest increase also occurred in the stem tissues. 相似文献
19.
20.
A Morphometric Analysis of the Redistribution of Organelles in Columella Cells of Horizontally-oriented Roots of Zea mays 总被引:1,自引:0,他引:1
In order to determine what structural changes in graviperceptivecells are associated with the onset of root gravicurvature,the redistribution of organelles in columella cells of horizontally-oriented,graviresponding roots of Zea mays has been quantified. Rootgravicurvature began by 15 min after reorientation, and didnot involve significant changes in the (i) volume of individualcolumella cells or amyloplasts, (ii) relative volume of anycellular organelle, (iii) number of amyloplasts per columellacell, or (iv) surface area or cellular location of endoplasmicreticulum. Sedimentation of amyloplasts began within 1 to 2min after reorientation, and was characterized by an intenselystaining area of cytoplasm adjacent to the sedimenting amyloplasts.By 5 min after reorientation, amyloplasts were located in thelower distal corner of columella cells, and, by 15 min afterreorientation, overlaid the entire length of the lower cellwall. No consistent contact between amyloplasts and any cellularstructure was detected at any stage of gravicurvature. Centrally-locatednuclei initially migrated upward in columella cells of horizontally-orientedroots, after which they moved to the proximal ends of the cellsby 15 min after reorientation. No significant pattern of redistributionof vacuoles, mitochondra, dictyosomes, or hyaloplasm was detectedthat correlated with the onset of gravicurvature. These resultsindicate that amyloplasts and nuclei are the only organelieswhose movements correlate positively with the onset of gravicurvatureby primary roots of this cultivar of Zea mays. Zea mays, root gravitropism, ultrastructure, morphometry, graviperception 相似文献