首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review is focused on methods that are used to derive hematopoietic cells from embryonic stem cells (ESCs). One of the strategies that have been recently used to achieve this goal is an approach of mimicking the hematopoietic niche in vitro by using hematopoiesis-supportive feeder cells, cocktails of soluble hematopoietic growth factors and a variety of matrices. While there is clear evidence that it is possible to derive hematopoietic stem cells (HSCs) and subsequently committed hematopoietic progenitors and mature cells from ESCs, there remains the need to address multiple issues including the efficiency of HSCs derivation in vitro and their proper functionality.  相似文献   

2.
胚胎干细胞向造血系统的分化   总被引:2,自引:0,他引:2  
胚胎干细胞是指从囊胚期的内细胞团中分离出来的尚未分化的胚胎细胞,可分化形成各种组织类型。在合适的条件下,胚胎干细胞可发育成造血干细胞及各类成熟血细胞,为造血干细胞移植及血细胞输注开辟了新的来源,同时也为造血发生及造血调控研究提供了有效可靠的模型。本文将综述ES细胞向造血系统分化的诱导条件、调控机制及应用前景。  相似文献   

3.
4.
5.
The nidi of hemopoiesis appeared in the liver and the lymph nodes of DBA/2, C57BL/6j and F1 (C57BL/6j X CBA) strains of mice of the 6th day after a single intraperitoneal injection of cyclophosphamide in a dose of 200 mg/kg. This process was accompanied by the appearance of stem hemopoietic cells in the liver. Their maximum number was observed on the 6th and the 9th days. On the 12th day their level decreased, but it still exceeded the one in the animals which received a suspension of normal liver cells. In myelosan exhaustion the pool of the bone marrow and splenic stem cells, the subsequent cyclophosphamide injection failed to induce the appearance of the nidi of hemopoiesis and stem cells in the liver.  相似文献   

6.
7.
The infection of newborn mice with a mouse erythroblastotic virus increases the number of hematopoietic stem cells in the spleen. Upon retransplantation of these stem cells into intermediate recipient mice certain growth parameters (doubling time, self renewal and extinction probability, etc.) which are abnormal when measured by techniques which avoid the intermediate recipient step, appear to be reverted toward normal values. The “normalization” of the stem cells is explained by the change in the environment supporting CFU growth during transplantation.  相似文献   

8.
Embryonic stem cells (ESCs) and adult stem cells both provide important resources to define the mechanisms of hematopoietic cell development. To date, studies that utilize hematopoietic stem cells (HSCs) isolated from sites such as bone marrow or umbilical cord blood have been the primary means to identify molecular and phenotypic characteristics of blood cell populations able to mediate long-term hematopoietic engraftment. Although these HSCs are very useful clinically, they are difficult to expand in culture. Now, basic research on human ESCs provides opportunities for novel investigations into the mechanisms of HSC self-renewal. Eventually, the long history of basic and clinical research with adult hematopoietic cell transplantation could translate to establish human ESCs as a suitable alternative starting cell source for clinical hematopoietic reconstitution.  相似文献   

9.
Cloning methods are now well described and becoming routine. Yet the frequency at which cloned offspring are produced remains below 2% irrespective of nucleus donor species or cell type. Especially in the mouse, few laboratories can make clones from adult somatic cells, and most mouse strains never succeed to produce cloned mice. On the other hand, nuclear transfer can be used to generate embryonic stem (ntES) cell lines from a patient's own somatic cells. We have shown that ntES cells can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. Several reports have already demonstrated that ntES cells can be used in regenerative medicine in order to rescue immune deficient or infertile phenotypes. However, it is unclear whether ntES cells are identical to fertilized embryonic stem (ES) cells. In general, ntES cell techniques are expected to be applicable to regenerative medicine, however, these techniques can also be used for the preservation of the genetic resources of mouse strains instead of preserving such resources in embryos, oocytes or spermatozoa. This review seeks to describe the phenotype, application, and possible abnormalities of cloned mice and ntES cell lines.  相似文献   

10.
Somatic cell hybridization is widely used to study the control of gene regulation and the stability of differentiated states. In contrast, the application of this method to germ cells has been limited in part because of an inability to culture germ cells. In this study, we produced germ cell hybrids using germ-line stem (GS) cells and multipotent germ-line stem (mGS) cells. While GS cells are enriched for spermatogonial stem cell (SSC) activity, mGS cells are similar to embryonic stem (ES) cells and originally derived from GS cells. Hybrids were successfully obtained between GS cells and ES cells, between GS cells and mGS cells, and between mGS cells and thymocytes. All exhibited ES cell markers and a behavior similar to ES cells, formed teratomas, and differentiated into somatic cell tissues. However, none of the hybrid cells were able to reconstitute spermatogenesis after microinjection into seminiferous tubules. Analyses of the DNA methylation patterns of imprinted genes also showed that mGS cells do not possess a DNA demethylation ability, which was found in embryonic germ cells derived from primordial germ cells. However, mGS cells reactivated the X chromosome and induced Pou5f1 expression in female thymocytes in a manner similar to ES cells. These data show that mGS cells possess ES-like reprogramming potential, which predominates over-SSC activity.  相似文献   

11.
目的探讨三七总皂苷(Panax notoginsenosides,PNSs)对斑马鱼胚胎造血的作用,为三七的药理学应用提供实验依据。方法通过乙醇提取得到PNSs,用50、100μg/mL的PNSs从75%外包时期开始处理斑马鱼胚胎。收集发育至不同时期的胚胎,检测药物处理后,斑马鱼初级造血和次级造血的分子标记的变化。结果 PNSs处理后,初级造血的分子标记gata1、hbbe3明显下降,生成的红细胞显著减少;PNSs处理还可以抑制造血干细胞(hematopoietic stem cell, HSC)发育。次级造血的分子标记runx1,cmyb在PNSs处理下表达下调,由HSC分化生成的T淋巴细胞分子标记rag1表达也显著降低。有意思的是,PNSs对斑马鱼初级和次级造血的抑制作用均呈剂量依赖效应。结论孕期可能需要慎重使用三七总皂苷药物。  相似文献   

12.
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells that originate from primordial germ cells (PGCs) in the early embryo. Although spermatogonial stem cells arise from PGCs, it is not clear whether fetal male germ cells function as spermatogonial stem cells able to produce functional sperm. In the present study, we examined the timing and mechanisms of the commitment of fetal germ cells to differentiate into spermatogonial stem cells by transplantation techniques. Transplantation of fetal germ cells into the seminiferous tubules of adult testis showed that donor germ cells, at 14.5 days postcoitum (dpc), were able to initiate spermatogenesis in the adult recipient seminiferous tubules, whereas no germ cell differentiation was observed in the transplantation of 12.5-dpc germ cells. These results indicate that the commitment of fetal germ cells to differentiate into spermatogonial stem cells initiates between embryonic days 12.5 and 14.5. Furthermore, the results suggest the importance of the interaction between germ cells and somatic cells in the determination of fetal germ cell differentiation into spermatogonial stem cells, as normal spermatogenesis was observed when a 12.5-dpc whole gonad was transplanted into adult recipient testis. In addition, sperm obtained from the 12.5- dpc male gonadal explant had the ability to develop normally if injected into the cytoplasm of oocytes, indicating that normal development of fetal germ cells in fetal gonadal explant occurred in the adult testicular environment.  相似文献   

13.
14.
15.
Hematopoietic stem cells convert into liver cells within days without fusion   总被引:63,自引:0,他引:63  
Both plasticity and cell fusion have been suggested to have a role in germ-layer switching. To understand the mechanisms underlying cell fate changes, we have examined a highly enriched population of hematopoietic stem cells (HSCs) in vitro or in vivo in response to injury for liver-specific phenotypic and functional changes. Here we show that HSCs become liver cells when cocultured with injured liver separated by a barrier. Chromosomal analyses and tissue-specific gene and/or protein expression show that microenvironmental cues rather than fusion are responsible for conversion in vitro. We transplanted HSCs into liver-injured mice and observed that HSCs convert into viable hepatocytes with increasing injury. Notably, liver function was restored 2-7 d after transplantation. We conclude that HSCs contribute to the regeneration of injured liver by converting into functional hepatocytes without fusion.  相似文献   

16.
17.
18.
19.
The homeobox gene goosecoid, originally identified in Xenopus, is expressed in the organizer or its equivalent during gastrulation in the frog, chick, zebrafish and mouse. To investigate the role of goosecoid in mouse development, we have generated embryonic stem cells that stably overexpress the murine homolog of goosecoid. These cells show a repression of the gastrulation-associated gene Brachyury. Interestingly, repression of Brachyury is conserved between Xenopus and mouse despite the lack of conservation of the Brachyury promoter. Further characterization of the goosecoid-overexpressing ES cells revealed that they maintain the expression of stage-specific embryonic antigen-1, and teratomas derived from goosecoid-overexpressing cells show the presence of cell types derived from all three germ layers. Some highly chimeric mice derived from goosecoid-overexpressing cells displayed skull defects. These observations suggest that goosecoid may play a role in specification of anterior mesendodermal fates and specifically in mouse craniofacial development.  相似文献   

20.
The molecules and environment that direct pluripotent stem cell differentiation into cardiomyocytes are largely unknown. Here, we determined a critical role of receptor tyrosine kinase, EphB4, in regulating cardiomyocyte generation from embryonic stem (ES) cells through endothelial cells. The number of spontaneous contracting cardiomyocytes, and the expression of cardiac‐specific genes, including α‐MHC and MLC‐2V, was significantly decreased in EphB4‐null ES cells. EphB4 was expressed in endothelial cells underneath contracting cardiomyocytes, but not in cardiomyocytes. Angiogenic inhibitors, including endostatin and angiostatin, inhibited endothelial cell differentiation and diminished cardiomyogenesis in ES cells. Generation of functional cardiomyocytes and the expression of cardiac‐specific genes were significantly enhanced by co‐culture of ES cells with human endothelial cells. Furthermore, the defects of cardiomyocyte differentiation in EphB4‐deficient ES cells were rescued by human endothelial cells. For the first time, our study demonstrated that endothelial cells play an essential role in facilitating cardiomyocyte differentiation from pluripotent stem cells. EphB4 signaling is a critical component of the endothelial niche to regulate regeneration of cardiomyocytes. J. Cell. Biochem. 111: 29–39, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号