首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
AOBP, a DNA-binding protein in pumpkin, contains a Dof domain that is composed of 52 amino acid residues and is highly conserved in several DNA-binding proteins of higher plants. The Dof domain has a significant resemblance to Cys2/Cys2 zinc finger DNA-binding domains of steroid hormone receptors and GATA1, but has a longer putative loop where an extra Cys residue is conserved. We show that the Dof domain in AOBP functions as a zinc finger DNA-binding domain and suggest that the Cys residue uniquely conserved in the putative loop might negatively regulate the binding to DNA.  相似文献   

3.
4.
The specific arrangement of secondary elements in a local motif often totally relies on the formation of coordination bonds between metal ions and protein ligands. This is typified by the ~ 30 amino acid eukaryotic zinc finger motif in which a β-sheet and an α-helix are clustered around a zinc ion by various combinations of four ligands.  相似文献   

5.
The ADR1 protein recognizes a six base-pair consensus DNA sequence using two zinc fingers and an adjacent accessory motif. Kinetic measurements were performed on the DNA-binding domain of ADR1 using surface plasmon resonance. Binding by ADR1 was characterized to two known native binding sequences from the ADH2 and CTA1 promoter regions, which differ in two of the six consensus positions. In addition, non-specific binding by ADR1 to a random DNA sequence was measured. ADR1 binds the native sites with nanomolar affinities. Remarkably, ADR1 binds non-specific DNA with affinities only approximately tenfold lower than the native sequences. The specific and non-specific binding affinities are conferred mainly by differences in the association phase of DNA binding. The association rate for the complex is strongly influenced by the proximal accessory region, while the dissociation reaction and specificity of binding are controlled by the two zinc fingers. Binding kinetics of two ADR1 mutants was also examined. ADR1 containing an R91K mutation in the accessory region bound with similar affinity to wild-type, but with slightly less sequence specificity. The R91K mutation was observed to increase binding affinity to a suboptimal sequence by decreasing the complex dissociation rate. L146H, a change-of-specificity mutation at the +3 position of the second zinc finger, bound its preferred sequence with a slightly higher affinity than wild-type. The L146H mutant indicates that beneficial protein-DNA contacts provide similar levels of stabilization to the complex, whether they are hydrogen-bonding or van der Waals interactions.  相似文献   

6.
7.
Molecular dynamics (MD) simulation methods have seen significant improvement since their inception in the late 1950s. Constraints of simulation size and duration that once impeded the field have lessened with the advent of better algorithms, faster processors, and parallel computing. With newer techniques and hardware available, MD simulations of more biologically relevant timescales can now sample a broader range of conformational and dynamical changes including rare events. One concern in the literature has been under which circumstances it is sufficient to perform many shorter timescale simulations and under which circumstances fewer longer simulations are necessary. Herein, our simulations of the zinc finger NEMO (2JVX) using multiple simulations of length 15, 30, 1000, and 3000 ns are analyzed to provide clarity on this point.  相似文献   

8.
9.
人工锌指核酸酶介导的基因组定点修饰技术   总被引:2,自引:0,他引:2  
Xiao A  Hu YY  Wang WY  Yang ZP  Wang ZX  Huang P  Tong XJ  Zhang B  Lin S 《遗传》2011,33(7):665-683
锌指核酸酶(ZFN)由锌指蛋白(ZFP)结构域和Fok I核酸内切酶的切割结构域人工融合而成,是近年来发展起来的一种可用于基因组定点改造的分子工具。ZFN可识别并结合特定的DNA序列,并通过切割这一序列的特定位点造成DNA的双链断裂(DSB)。在此基础上,人们可以对基因组的特定位点进行各种遗传操作,包括基因打靶、基因定点插入、基因修复等,从而能够方便快捷地对基因组实现靶向遗传修饰。这种新的基因组定点修饰方法的突出优势是适用性好,对物种没有选择性,并且可以在细胞和个体水平进行遗传操作。文章综述了ZFN技术的研究进展及应用前景,重点介绍ZFN的结构与作用机制、现有的靶点评估及锌指蛋白库的构建与筛选方法、基因组定点修饰的策略,以及目前利用这一技术已成功实现突变的物种及内源基因,为开展这一领域的研究工作提供参考。  相似文献   

10.
11.
锌指蛋白核酸酶的作用原理及其应用   总被引:1,自引:0,他引:1  
Zhong Q  Zhao SH 《遗传》2011,33(2):123-130
锌指蛋白核酸酶(Zinc finger nucleases,ZFN)因其能特异性识别并切割DNA序列以及可设计性,被用于基因定点突变和外源基因定点整合。目前,ZFN技术以其准确的靶位点设计能力和诱发高效率基因打靶的优势,越来越受到基因改造研究者的重视,已经成功应用于动植物细胞、胚胎的基因改造。随着鉴定靶DNA高亲和力的锌指蛋白(Zinc finger protein,ZFP)实验技术日渐成熟,可以预见到不久的将来这项技术会在基因工程和育种中得到广泛应用。文章介绍了锌指蛋白识别DNA靶位点和ZFN介导的基因打靶(Double strand break gene targeting,DSB-GT)的原理,同时还综述了目前ZFN技术用于基因改造的研究进展。  相似文献   

12.
13.
Mutation of a small number of amino acids in the DNA-binding domain of the estrogen receptor to the corresponding sequence of the glucocorticoid receptor switches the specificity of the receptor in transactivation assays (Mader, S., Kumar, V., de Verneuil, H., and Chambon, P. (1989) Nature 338, 271-274). We have made the corresponding reciprocal mutations in the context of the glucocorticoid receptor DNA-binding domain and studied the binding of wild type and mutant purified proteins to palindromic glucocorticoid and estrogen response elements as well as to elements of intermediate sequence, using gel mobility shift assays. We show here that a protein with two altered amino acids binds glucocorticoid and estrogen response elements with a low but equal affinity, whereas a protein with an additional changed residue has a high affinity for estrogen response elements but still retains a considerable affinity for glucocorticoid response elements. Using binding sites of intermediate sequence we have further characterized the interaction with DNA. The in vitro DNA binding results are confirmed by in vivo transactivation assays in yeast. Finally we suggest a testable model for amino acid/base pair interactions involved in recognition by the glucocorticoid receptor DNA-binding domain of its target sequence.  相似文献   

14.
NHP6A is a non-sequence-specific DNA-binding protein from Saccharomyces cerevisiae which belongs to the HMGB protein family. Previously, we have solved the structure of NHP6A in the absence of DNA and modeled its interaction with DNA. Here, we present the refined solution structures of the NHP6A-DNA complex as well as the free 15bp DNA. Both the free and bound forms of the protein adopt the typical L-shaped HMGB domain fold. The DNA in the complex undergoes significant structural rearrangement from its free form while the protein shows smaller but significant conformational changes in the complex. Structural and mutational analysis as well as comparison of the complex with the free DNA provides insight into the factors that contribute to binding site selection and DNA deformations in the complex. Further insight into the amino acid determinants of DNA binding by HMGB domain proteins is given by a correlation study of NHP6A and 32 other HMGB domains belonging to both the DNA-sequence-specific and non-sequence-specific families of HMGB proteins. The resulting correlations can be rationalized by comparison of solved structures of HMGB proteins.  相似文献   

15.
We have exploited emulsion-based in vitro compartmentalization (IVC) to devise a method for the selection of zinc finger proteins (ZFPs) on the basis of their DNA-binding specificity. A library of ZFPs fused to a C-terminal peptide tag is encoded by a set of DNA cassettes that are prepared wholly in vitro. In addition to the ZFP gene, each DNA cassette also carries a given DNA target binding site sequence for which one wishes to isolate ZFP binders. An aliquot of the library is added to bacterial S30 extract and emulsified in mineral oil so that most of the aqueous droplets contain, on average, no more than one gene. If an intra-compartmentally expressed ZFP binds specifically to its encoding DNA via the target binding site, the complex can be purified by affinity capture via the peptide tag after breaking the emulsion, thus rescuing the gene. We present proof-of-principle for this IVC selection method by selecting a specific high-affinity ZFP gene from a high background of a related gene. We also propose that high-affinity ZFPs can be used as genotype-phenotype linkages to enable selection of other proteins using IVC.  相似文献   

16.
Arabidopsis proteins were predicted which share an 80 residue zinc finger domain known from ADP-ribosylation factor GTPase-activating proteins (ARF GAPs). One of these is a 37 kDa protein, designated ZAC, which has a novel domain structure in which the N-terminal ARF GAP domain and a C-terminal C2 domain are separated by a region without homology to other known proteins. Zac promoter/-glucuronidase reporter assays revealed highest expression levels in flowering tissue, rosettes and roots. ZAC protein was immuno-detected mainly in association with membranes and fractionated with Golgi and plasma membrane marker proteins. ZAC membrane association was confirmed in assays by a fusion between ZAC and the green fluorescence protein and prompted an analysis of the in vitro phospholipid-binding ability of ZAC. Phospholipid dot-blot and liposome-binding assays indicated that fusion proteins containing the ZAC-C2 domain bind anionic phospholipids non-specifically, with some variance in Ca2+ and salt dependence. Similar assays demonstrated specific affinity of the ZAC N-terminal region (residues 1–174) for phosphatidylinositol 3-monophosphate (PI-3-P). Binding was dependent in part on an intact zinc finger motif, but proteins containing only the zinc finger domain (residues 1–105) did not bind PI-3-P. Recombinant ZAC possessed GTPase-activating activity on Arabidopsis ARF proteins. These data identify a novel PI-3-P-binding protein region and thereby provide evidence that this phosphoinositide is recognized as a signal in plants. A role for ZAC in the regulation of ARF-mediated vesicular transport in plants is discussed.  相似文献   

17.
One simple and widespread method to create engineered zinc fingers targeting the desired DNA sequences is to modularly assemble multiple finger modules pre-selected to recognize each DNA triplet. However, it has become known that a sufficient DNA binding affinity is not always obtained. In order to create successful zinc finger proteins, it is important to understand the context-dependent contribution of each finger module to the DNA binding ability of the assembled zinc finger proteins. Here, we have created finger-deletion mutants of zinc finger proteins and examined the DNA bindings of these zinc fingers to clarify the contributions of each finger module. Our results indicate that not only a positive cooperativity but also a context-dependent reduction in the DNA binding activity can be induced by assembling zinc finger modules.  相似文献   

18.
The small zinc finger proteins tbZFP1 and tbZFP2 have been implicated in the control of Trypanosoma brucei differentiation to the procyclic form. Here, we report that the complete ZFP family in Trypanosoma cruzi is composed by four members, ZFP1A and B, and ZFP2A and B. ZFP1B is a paralog specific gene restricted to T. cruzi, while the ZFP2A and B paralogs diverged prior to the trypanosomatid lineage separation. Moreover, we demonstrate that TcZFP1 and TcZFP2 members interact with each other and that this interaction is mediated by a WW domain in TcZFP2. Also, TcZFP2B strongly homodimerizes by a glycine rich region absent in TcZFP2A. We propose a model to discuss the relevance of these protein-protein interactions in terms of the functions of these proteins.  相似文献   

19.
Cys2-His2 zinc fingers are one of the most common types of DNA-binding domains. Modifications to zinc-finger binding specificity have recently enabled custom DNA-binding proteins to be designed to a wide array of target sequences. We present here a 1.96 A structure of Aart, a designed six-zinc finger protein, bound to a consensus DNA target site. This is the first structure of a designed protein with six fingers, and was intended to provide insights into the unusual affinity and specificity characteristics of this protein. Most protein-DNA contacts were found to be consistent with expectations, while others were unanticipated or insufficient to explain specificity. Several were unexpectedly mediated by glycerol, water molecules or amino acid-base stacking interactions. These results challenge some conventional concepts of recognition, particularly the finding that triplets containing 5'A, C, or T are typically not specified by direct interaction with the amino acid in position 6 of the recognition helix.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号