首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We study the effects of a population bottleneck on the inbreeding depression and genetic load caused by deleterious mutations in an outcrossing population. The calculations assume that loci have multiplicative fitness effects and that linkage disequilibrium is negligible. Inbreeding depression decreases immediately after a sudden reduction of population size, but the drop is at most only several percentage points, even for severe bottlenecks. Highly recessive mutations experience a purging process that causes inbreeding depression to decline for a number of additional generations. On the basis of available parameter estimates, the absolute fall in inbreeding depression may often be only a few percentage points for bottlenecks of 10 or more individuals. With a very high lethal mutation rate and a very slow population growth, however, the decline may be on the order of 25%. We examine when purging might favor a switch from outbreeding to selfing and find it occurs only under very limited conditions unless population growth is very slow. In contrast to inbreeding depression, a bottleneck causes an immediate increase in the genetic load. Purging causes the load to decline and then overshoot its equilibrium value. The changes are typically modest: the absolute increase in the total genetic load will be at most a few percentage points for bottlenecks of size 10 or more unless the lethal mutation rate is very high and the population growth rate very slow.  相似文献   

2.
We studied the effects of population size on the inbreeding depression and genetic load caused by deleterious mutations at a single locus. Analysis shows how the inbreeding depression decreases as population size becomes smaller and/or the rate of inbreeding increases. This pattern contrasts with that for the load, which increases as population size becomes smaller but decreases as inbreeding rate goes up. The depression and load both approach asymptotic limits when the population size becomes very large or very small. Numerical results show that the transition between the small and the large population regimes is quite rapid, and occurs largely over a range of population sizes that vary by a factor of 10. The effects of drift on inbreeding depression may bias some estimates of the genomic rate of deleterious mutation. These effects could also be important in the evolution of breeding systems in hermaphroditic organisms and in the conservation of endangered populations.  相似文献   

3.
Inbreeding depression should evolve with selfing rate when frequent inbreeding results in exposure of and selection against deleterious alleles. The selfing rate may be modified by plant traits such as flower size, or by population characteristics such as census size that can affect the probability of biparental inbreeding. Here we quantify inbreeding depression (δ) among different population sizes of Collinsia parviflora, a wildflower with interpopulation variation in flower size, by comparing fitness components and multiplicative fitness of experimentally produced selfed and outcrossed offspring. Selfed offspring had reduced multiplicative fitness compared to outcrossed offspring, but inbreeding depression was low in all combinations of population size and flower size (δ ≤ 0.05) except in large populations of large-flowered plants (δ = 0.45). The decrement to multiplicative fitness with inbreeding was not affected by population size nested within flower size, but differed between small- and large-flowered plants: small-flowered populations had lower overall inbreeding depression (δ = 0.04) compared to large-flowered populations (δ = 0.25). The difference in load with flower size suggests that either selection has removed deleterious recessive alleles or these alleles have become fixed in small-flowered, potentially more selfing populations, but that purging has not occurred to the same extent in presumably outcrossing large-flowered populations.  相似文献   

4.
The amounts of inbreeding depression upon selfing and of heterosis upon outcrossing determine the strength of selection on the selfing rate in a population when this evolves polygenically by small steps. Genetic models are constructed which allow inbreeding depression to change with the mean selfing rate in a population by incorporating both mutation to recessive and partially dominant lethal and sublethal alleles at many loci and mutation in quantitative characters under stabilizing selection. The models help to explain observations of high inbreeding depression (> 50%) upon selfing in primarily outcrossing populations, as well as considerable heterosis upon outcrossing in primarily selfing populations. Predominant selfing and predominant outcrossing are found to be alternative stable states of the mating system in most plant populations. Which of these stable states a species approaches depends on the history of its population structure and the magnitude of effect of genes influencing the selfing rate.  相似文献   

5.
Denis Roze 《Genetics》2015,201(2):745-757
A classical prediction from single-locus models is that inbreeding increases the efficiency of selection against partially recessive deleterious alleles (purging), thereby decreasing the mutation load and level of inbreeding depression. However, previous multilocus simulation studies found that increasing the rate of self-fertilization of individuals may not lead to purging and argued that selective interference among loci causes this effect. In this article, I derive simple analytical approximations for the mutation load and inbreeding depression, taking into account the effects of interference between pairs of loci. I consider two classical scenarios of nonrandomly mating populations: a single population undergoing partial selfing and a subdivided population with limited dispersal. In the first case, correlations in homozygosity between loci tend to reduce mean fitness and increase inbreeding depression. These effects are stronger when deleterious alleles are more recessive, but only weakly depend on the strength of selection against deleterious alleles and on recombination rates. In subdivided populations, interference increases inbreeding depression within demes, but decreases heterosis between demes. Comparisons with multilocus, individual-based simulations show that these analytical approximations are accurate as long as the effects of interference stay moderate, but fail for high deleterious mutation rates and low dominance coefficients of deleterious alleles.  相似文献   

6.
It has been assumed, based on theoretical studies, that lethals with the level of dominance estimated from experimental studies would have an allele frequency that is virtually independent of effective population size. However, here it is shown numerically that the expected frequency of lethals with low levels of dominance is also dependent on finite population size, although not as much as completely recessive lethals. This finding is significant in determining the standing level of inbreeding depression and the consequent potential for the evolution of self-fertilization. In addition, the architecture of genetic variation influencing inbreeding depression in populations with a history of small size may be of important consequence in endangered species. Finally, it is shown that the loss of lethal genetic variation often occurs much more quickly than the regeneration of lethal variation by mutation. This asymmetry may result in a lower standing genetic variation for inbreeding depression than expected from mutation rates and contemporary population size data.  相似文献   

7.
The interdependence of mating structure and inbreeding depression   总被引:1,自引:0,他引:1  
The level of inbreeding depression depends on the genetic structure and composition of a population, and is not a meaningful concept in its own right. Models are presented for the dynamics of alleles governing mating strategy when viability is determined by generalized heterosis or lethal recessive alleles. It is shown that a protected polymorphism for mating strategy may ensue from generalized heterosis, while lethal recessive alleles may favor the common mating strategy. Further, neither model provides the conditions allowing spread of an allele when rare (protection) which are obtained by assuming as constant the level of inbreeding depression associated with the equilibrium genetic structure dictated by the common mating strategy.  相似文献   

8.
Using a stochastic model of a finite population in which there is mutation to partially recessive detrimental alleles at many loci, we study the effects of population size and linkage between the loci on the population mean fitness and inbreeding depression values. Although linkage between the selected loci decreases the amount of inbreeding depression, neither population size nor recombination rate have strong effects on these quantities, unless extremely small values are assumed. We also investigate how partial linkage between the loci that determine fitness affects the invasion of populations by alleles at a modifier locus that controls the selfing rate. In most of the cases studied, the direction of selection on modifiers was consistent with that found in our previous deterministic calculations. However, there was some evidence that linkage between the modifier locus and the selected loci makes outcrossing less likely to evolve; more losses of alleles promoting outcrossing occurred in runs with linkage than in runs with free recombination. We also studied the fate of neutral alleles introduced into populations carrying detrimental mutations. The times to loss of neutral alleles introduced at low frequency were shorter than those predicted for alleles in the absence of selected loci, taking into account the reduction of the effective population size due to inbreeding. Previous studies have been confined to outbreeding populations, and to alleles at frequencies close to one-half, and have found an effect in the opposite direction. It therefore appears that associations between neutral and selected loci may produce effects that differ according to the initial frequencies of the neutral alleles.  相似文献   

9.
In a metapopulation, the process of recurrent local extinction and recolonization gives rise to an age structure among demes. Recently established demes will tend to differ from older demes in terms of the levels of genetic diversity found within them and the way this diversity is distributed among demes in the same and different ages. The effects of population turnover on average levels of genetic diversity among demes in a metapopulation have been the focus of much attention, both for neutral and nonneutral loci, but much less is known about the distribution of nonneutral genetic diversity among demes of different ages. In this paper, we used computer simulations to study the distribution of genetic load, inbreeding depression and heterosis in an age‐structured metapopulation. We found that, for mildly deleterious mutations, within‐deme inbreeding depression increased, whereas heterosis and genetic load decreased with deme age following severe colonization bottlenecks. In contrast, recessive lethal alleles tended to be purged during colonization, with older populations showing higher genetic load and higher within‐deme inbreeding depression. Heterosis caused by recessive lethal alleles and resulting from gene flow among different demes tended to be greatest for young demes, because the mutations responsible tended to be purged in the first few generations after colonization, but its effects increased again as populations grow older as a result of immigration. Our results point to a need for estimates of genetic diversity, genetic load, within‐deme inbreeding depression and heterosis in demes of different age classes separately.  相似文献   

10.

Genetic rescue is increasingly considered a promising and underused conservation strategy to reduce inbreeding depression and restore genetic diversity in endangered populations, but the empirical evidence supporting its application is limited to a few generations. Here we discuss on the light of theory the role of inbreeding depression arising from partially recessive deleterious mutations and of genetic purging as main determinants of the medium to long-term success of rescue programs. This role depends on two main predictions: (1) The inbreeding load hidden in populations with a long stable demography increases with the effective population size; and (2) After a population shrinks, purging tends to remove its (partially) recessive deleterious alleles, a process that is slower but more efficient for large populations than for small ones. We also carry out computer simulations to investigate the impact of genetic purging on the medium to long term success of genetic rescue programs. For some scenarios, it is found that hybrid vigor followed by purging will lead to sustained successful rescue. However, there may be specific situations where the recipient population is so small that it cannot purge the inbreeding load introduced by migrants, which would lead to increased fitness inbreeding depression and extinction risk in the medium to long term. In such cases, the risk is expected to be higher if migrants came from a large non-purged population with high inbreeding load, particularly after the accumulation of the stochastic effects ascribed to repeated occasional migration events. Therefore, under the specific deleterious recessive mutation model considered, we conclude that additional caution should be taken in rescue programs. Unless the endangered population harbors some distinctive genetic singularity whose conservation is a main concern, restoration by continuous stable gene flow should be considered, whenever feasible, as it reduces the extinction risk compared to repeated occasional migration and can also allow recolonization events.

  相似文献   

11.
A multilocus stochastic model is developed to simulate the dynamics of mutational load in small populations of various sizes. Old mutations sampled from a large ancestral population at mutation-selection balance and new mutations arising each generation are considered jointly, using biologically plausible lethal and deleterious mutation parameters. The results show that inbreeding depression and the number of lethal equivalents due to partially recessive mutations can be partly purged from the population by inbreeding, and that this purging mainly involves lethals or detrimentals of large effect. However, fitness decreases continuously with inbreeding, due to increased fixation and homozygosity of mildly deleterious mutants, resulting in extinctions of very small populations with low reproductive rates. No optimum inbreeding rate or population size exists for purging with respect to fitness (viability) changes, but there is an optimum inbreeding rate at a given final level of inbreeding for reducing inbreeding depression or the number of lethal equivalents. The interaction between selection against partially recessive mutations and genetic drift in small populations also influences the rate of decay of neutral variation. Weak selection against mutants relative to genetic drift results in apparent overdominance and thus an increase in effective size (Ne) at neutral loci, and strong selection relative to drift leads to a decrease in Ne due to the increased variance in family size. The simulation results and their implications are discussed in the context of biological conservation and tests for purging.  相似文献   

12.
Gametophytic self-incompatibility (SI) in plants is a widespread mechanism preventing self-fertilization and the ensuing inbreeding depression, but it often evolves to self-compatibility. We analyze genetic mechanisms for the breakdown of gametophytic SI, incorporating a dynamic model for the evolution of inbreeding depression allowing for partial purging of nearly recessive lethal mutations by selfing, and accounting for pollen limitation and sheltered load linked to the S-locus. We consider two mechanisms for the breakdown of gametophytic SI: a nonfunctional S-allele and an unlinked modifier locus that inactivates the S-locus. We show that, under a wide range of conditions, self-compatible alleles can invade a self-incompatible population. Conditions for invasion are always less stringent for a nonfunctional S-allele than for a modifier locus. The spread of self-compatible genotypes is favored by extremely high or low selfing rates, a small number of S-alleles, and pollen limitation. Observed parameter values suggest that the maintenance of gametophytic SI is caused by a combination of high inbreeding depression in self-incompatible populations coupled with intermediate selfing rates of the self-compatible genotypes and sheltered load linked to the S-locus.  相似文献   

13.
We tested the hypothesis that small, isolated populations would show less depression in fitness when inbred than would large, central populations. Laboratory stocks of Peromyscus leucopus and P. polionotus were established from insular, peninsular, and central populations. The isolated populations had one-third to one-half the genic diversity of central populations. Responses to inbreeding were highly varied: some populations had smaller litters, others experienced higher mortality, some showed slower growth rates, and one displayed no measurable effects when inbred. These results suggest that inbreeding depression is controlled by a small number of genes and that the size of the genetic load depends on which alleles are present in the founders of a population. The severity of fitness depression in inbred litters did not correlate with initial genic diversity of the stocks nor, therefore, with the size of the wild populations. Fitness measures appeared linearly related to the inbreeding coefficient of the liters, with no diminution of deleterious effects through subsequent generations of inbreeding. Thus overdominance of fitness traits probably contributed as much to the genetic load as did deleterious recessive alleles. The inbreeding level of the dam negatively affected the size, growth, and survival of litters only in genetically diverse populations, indicating that the load of recessive alleles negatively impacting maternal care may have been reduced by selection in the more peripheral populations during past bottlenecks.  相似文献   

14.
Understanding biological invasion is currently one of the main scientific challenges for ecologists. The introduction process is crucial for the success of an invasion, especially when it involves a demographic bottleneck. A small introduced population is expected to face a higher risk of extinction before the first stage of invasion is complete if inbreeding depression, caused by the expression of deleterious alleles, is important. Changes in mating regimes or in population size can induce the evolution of deleterious allele frequencies, either by selection or by drift, possibly resulting in the purging or the fixation of such alleles within the population. The harlequin ladybird Harmonia axyridis became invasive on several continents following a scenario including at least one event of demographic bottleneck. Although native populations suffered from severe inbreeding depression, it was greatly reduced in invasive ones suggesting that deleterious alleles were purged during the invasion process. In this study, we performed an experiment designed to manipulate the effective population size of H. axyridis across successive generations to mimic contrasting introduction events. We used the measurement of two fitness-related phenotypic traits in order to test (1) if inbreeding depression can evolve at the time-scale of an invasion; and (2) if the changes in inbreeding depression following a bottleneck in laboratory conditions are compatible with the purging of deleterious alleles observed in this species. We found that two generations of very low population size are enough to induce a substantial change in inbreeding depression. Although the genetic changes mostly consisted in fixation of deleterious alleles, purging did also occur, sometimes simultaneously with fixation.  相似文献   

15.
The causes and magnitude of inbreeding depression are of considerable importance for a wide range of issues in evolutionary and conservation biology, but we have only a limited understanding of inbreeding depression in natural populations. Here, we present a study of inbreeding in a large wild population of collared flycatchers (Ficedula albicollis). Inbreeding was rare, to the extent that we detected only 1.04% of 2139 matings over 18 years that resulted in offspring with a non-zero inbreeding coefficient, f > 0. When it did occur, inbreeding caused a significant reduction in the egg-hatching rate, in fledgling skeletal size and in post-fledging juvenile survival, with the number of offspring being recruited to the breeding population from a nest of f = 0.25 being reduced by 94% relative to a non-inbred nest. A maximum-likelihood estimate of the number of lethal equivalents per gamete was very high at B = 7.47, indicating a substantial genetic load in this population. There was also a non-significant tendency for inbreeding depression to increase with the strength of selection on a trait. The probability of mating between close relatives (f = 0.25) increased throughout the breeding season, possibly reflecting increased costs of inbreeding avoidance. Our results illustrate how severe inbreeding depression and considerable genetic load may exist in natural populations, but detecting them may require extensive long-term datasets.  相似文献   

16.
It has been hypothesized that natural selection reduces the “genetic load” of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection.  相似文献   

17.
Glémin S  Ronfort J  Bataillon T 《Genetics》2003,165(4):2193-2212
Inbreeding depression is a general phenomenon that is due mainly to recessive deleterious mutations, the so-called mutation load. It has been much studied theoretically. However, until very recently, population structure has not been taken into account, even though it can be an important factor in the evolution of populations. Population subdivision modifies the dynamics of deleterious mutations because the outcome of selection depends on processes both within populations (selection and drift) and between populations (migration). Here, we present a general model that permits us to gain insight into patterns of inbreeding depression, heterosis, and the load in subdivided populations. We show that they can be interpreted with reference to single-population theory, using an appropriate local effective population size that integrates the effects of drift, selection, and migration. We term this the "effective population size of selection" (NS(e)). For the infinite island model, for example, it is equal to NS(e) = N1 + m/hs, where N is the local population size, m the migration rate, and h and s the dominance and selection coefficients of deleterious mutation. Our results have implications for the estimation and interpretation of inbreeding depression in subdivided populations, especially regarding conservation issues. We also discuss the possible effects of migration and subdivision on the evolution of mating systems.  相似文献   

18.
The severity of inbreeding depression appears to vary among taxa, but few ecological or other patterns have been identified that predict accurately which taxa are most sensitive to inbreeding. To examine the causes of heterogeneity in inbreeding depression, the effects of inbreeding on reproduction, survival, and growth were measured in three replicate experimental stocks for each of three subspecies of Peromyscus polionotus mice. Inbreeding of the dam reduced the probability of breeding, the probability of producing a second litter, and litter size. Inbreeding of the litter caused depression of litter size, juvenile viability, and mass at weaning, and caused an increase in the within-litter variance in mass. In spite of differences between the subspecies in natural population sizes, genetic variation, and mean rates of reproduction and survival, all variation observed between experimental populations in their responses to inbreeding could be attributed to random founder effects. The genetic load of deleterious alleles in each replicate was unequally partitioned among its founder pairs, and different founders contributed to the load affecting different fitness components. Thus, inbreeding depression for any one fitness component, in our experimental environment, must be due to relatively few deleterious alleles with major effects. Genetic loads so comprised would be expected to diverge among natural populations due to both random drift and selective removal of recessive deleterious alleles during population bottlenecks. The near universality of inbreeding depression would be maintained, however, if different alleles contribute to inbreeding depression of different fitness components and in different environments.  相似文献   

19.
A comprehensive understanding of plant mating system evolution requires detailed genetic models for both the mating system and inbreeding depression, which are often intractable. A simple approximation assuming that the mating system evolves by small infrequent mutational steps has been proposed. We examine its accuracy by comparing the evolutionarily stable selfing rates it predicts to those obtained from an explicit genetic model of the selfing rate, when inbreeding depression is caused by partly recessive deleterious mutations at many loci. Both models also include pollen limitation and pollen discounting. The approximation produces reasonably accurate predictions with a low or moderate genomic mutation rate to deleterious alleles, on the order of U = 0.02–0.2. However, for high mutation rates, the predictions of the full genetic model differ substantially from those of the approximation, especially with nearly recessive lethal alleles. This occurs because when a modifier allele affecting the selfing rate is rare, homozygous modifiers are produced mainly by selfing, which enhances the opportunity for purging nearly recessive lethals and increases the marginal fitness of the allele modifying the selfing rate. Our results confirm that explicit genetic models of selfing rate and inbreeding depression are required to understand mating system evolution.  相似文献   

20.
Elimination or reduction of inbreeding depression by natural selection at the contributing loci (purging) has been hypothesized to effectively mitigate the negative effects of inbreeding in small isolated populations. This may, however, only be valid when the environmental conditions are relatively constant. We tested this assumption using Drosophila melanogaster as a model organism. By means of chromosome balancers, chromosomes were sampled from a wild population and their viability was estimated in both homozygous and heterozygous conditions in a favourable environment. Around 50% of the chromosomes were found to carry a lethal or sublethal mutation, which upon inbreeding would cause a considerable amount of inbreeding depression. These detrimentals were artificially purged by selecting only chromosomes that in homozygous condition had a viability comparable to that of the heterozygotes (quasi-normals), thereby removing most deleterious recessive alleles. Next, these quasi-normals were tested both for egg-to-adult viability and for total fitness under different environmental stress conditions: high-temperature stress, DDT stress, ethanol stress, and crowding. Under these altered stressful conditions, particularly for high temperature and DDT, novel recessive deleterious effects were expressed that were not apparent under control conditions. Some of these chromosomes were even found to carry lethal or near-lethal mutations under stress. Compared with heterozygotes, homozygotes showed on average 25% additional reduction in total fitness. Our results show that, except for mutations that affect fitness under all environmental conditions, inbreeding depression may be due to different loci in different environments. Hence purging of deleterious recessive alleles can be effective only for the particular environment in which the purging occurred, because additional load will become expressed under changing environmental conditions. These results not only indicate that inbreeding depression is environment dependent, but also that inbreeding depression may become more severe under changing stressful conditions. These observations have significant consequences for conservation biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号