首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was recently shown that the mitochondrial isozyme of heart creatine kinase binds to cardiolipin on the outer half of the inner membrane [Müller, M., et al. (1985) J. Biol. Chem. 260, 3839-3843]. The enzyme has now been extracted and purified to homogeneity from rat heart mitochondria, and cleaved with CNBr. The fragments have been separated on an FPLC system using a Mono Q HR 5/5 column. Only one of these binds to cardiolipin-containing liposomes and has thus been identified as the cardiolipin-binding domain of the enzyme. Its amino acid sequence has been determined. The fragment contains 25 amino acids and corresponds to the N-terminal region of the protein. The binding of the fragment of cardiolipin-containing liposomes was inhibited by adriamycin. Another and larger CNBr fragment could be specifically labelled with periodate-oxidized (di-aldehyde) ATP and has thus been identified as the ATP-binding domain. Chemical modification of the basic amino acids Lys and Arg of the enzyme abolished its binding to cardiolipin.  相似文献   

2.
Non-immune activation of the first component of complement (C1) by the heart mitochondrial inner membrane has been investigated. Cardiolipin, the only strong activator of C1 among phospholipids, is present in large amounts in the heart mitochondrial inner membrane. We therefore studied its contribution to C1 activation by mitochondria. The proteins of the mitochondrial inner membrane were found to activate C1 only weakly, in contrast with the phospholipid fraction which induces strong C1 activation. Furthermore, the digestion of mitochondrial inner membranes with proteolytic enzymes did not affect C1 activation. Additional support in favour of cardiolipin being the responsible activator came from competition experiments with mitochondrial creatine kinase (mt-CPK) and adriamycin, known to bind to cardiolipin. Both mt-CPK and adriamycin displaced C1q from the mitochondrial inner membrane. In addition, C1q displaced mt-CPK bound to mitoplasts.  相似文献   

3.
The binding of adriamycin and its two analogues 4'-epidoxorubicin and 4'-deoxydoxorubicin to synthetic and mitochondrial membranes was investigated by using resonance energy transfer between these drugs and two fluorescent probes, diphenylhexatriene (DPH) and tryptophan. The fluorescence of the lipid probe DPH in both types of membranes and tryptophan in mitochondria was quenched by the anthracyclines in a dose-dependent manner. In sonicated, fluid-phase dimyristoyl-L-alpha-phosphatidylcholine (DMPC) vesicles, the half-quenching concentration (K50) of adriamycin was 17 +/- 1 microM, whereas in bilayers containing a 1:1 molar ratio of DMPC to cardiolipin (CL), the value was 8 +/- 1 microM. In liver and heart mitochondria, the K50 values were 8 +/- 2 and 11 +/- 3 microM, respectively. Similar results were obtained for the other two drugs. Replacing a nonionic with an ionic medium or decreasing the pH from pH 7.7 to pH 6.9 increased the K50 value of adriamycin for DPH in DMPC/CL (1:1 molar) liposomes and in mitochondria. Higher concentrations of anthracycline were needed to quench the fluorescence of tryptophan. The results suggest that these drugs interact with both phospholipids and proteins and that the cardiotoxicity of adriamycin is unlikely to be related to the amount of drug bound to heart mitochondria.  相似文献   

4.
The ability of adriamycin to complex cardiolipin was used to determine the distribution of cardiolipin across the inner membrane of rat liver and heart mitochondria. In both mitochondrial types, about 57 +/- 5% of the total cardiolipin was found to be located in the cytoplasmic face of the inner membrane. Mitochondria and mitoplasts were used to study the cytoplasmic face of the inner membrane, purified submitochondrial vesicles with inverted membrane orientation for the matrix face. The cardiolipin amount titrated by adriamycin in the latter was found to be complementary to the amount titrated in the cytoplasmic face. The adriamycin association constant determined for the first saturation level of mitochondria was in good agreement with the value published by Goormaghtigh et al. (Goormaghtigh, E., Chatelain, P., Caspers, J., and Ruysschaert, J. M. (1980) Biochim. Biophys. Acta 597, 1-14) for cardiolipin in artificial membranes. Two binding plateaus were observed when increasing amounts of adriamycin were added to mitochondria. The plateau at higher concentrations is conveniently explained by the penetration of adriamycin into mitochondria and the titration of cardiolipin in the matrix face. Scatchard plot analysis of the binding curves leading to the two plateaus produced almost identical association constants. The total amount of cardiolipin in mitochondria calculated from curves of this type corresponded to the total amount of cardiolipin determined by phosphate analysis of extracts, analyzed by thin layer chromatography.  相似文献   

5.
The isolated and liposome-reconstituted mitochondrial phosphate carrier exhibits a sigmoidal inhibition curve by mersalyl, similar to that found with intact mitochondria. In contrast a hyperbolic inhibition curve is found (a) by titration of the soluble carrier with mersalyl before reconstitution in liposomes and (b) by titration of the reconstituted carrier with mersalyl after successively pretreatment of the mitochondria with low, non-inhibitory concentrations of mersalyl, excess N-ethylmaleimide and dithiothreitol. The inhibition of the reconstituted, but not of the soluble, phosphate carrier by mersalyl can be reversed by dithiothreitol. Cupric di(1,10-phenanthroline) inhibits the soluble but not the reconstituted phosphate carrier. The inhibited phosphate carrier can be reactivated by dithiothreitol in the soluble state but not after reconstitution in liposomes. The data support the previously suggested model of the phosphate carrier, assuming a dimer of two identical subunits for the active unit.  相似文献   

6.
In vitro synthesized precursors of several mitochondrial proteins, including P-450(SCC), adrenodoxin, and malate dehydrogenase, bound to liposomes prepared from mitochondrial phospholipids, but not to those from microsomal phospholipids. When liposomes were prepared from various pure phospholipids, adrenodoxin precursor was bound only to the liposomes that contained cardiolipin. The liposomes containing other phospholipids did not show the binding affinity for the precursor. The binding was observed only with the precursor peptides of adrenodoxin and malate dehydrogenase, and their mature forms were not bound to the liposomes. The binding of the precursors was dependent on the concentration of cardiolipin in the liposomes. Liposomes containing various cardiolipin derivatives with modified polar head groups showed very different binding affinity for adrenodoxin precursor, suggesting the importance of the structure of the polar head of the cardiolipin molecule. Two or three positively charged amino acid residues in the extension peptide of P-450(SCC) precursor were replaced by neutral amino acid residues by site-directed mutagenesis. The mutated P-450(SCC) precursors did not bind to the liposomes containing cardiolipin. The results indicated that mitochondrial protein precursors have specific affinity for cardiolipin, and the affinity was due to the interaction between the extension peptides of the precursors and the polar head of the cardiolipin molecule.  相似文献   

7.
The interaction of adriamycin with cardiolipin in model membranes and in various membrane preparations derived from rat liver mitochondria was studied and the results are analyzed in the light of a possible specific interaction between adriamycin and cardiolipin. It was found that adriamycin binds to cardiolipin-containing model membranes with a fixed stoichiometry of two drug molecules per cardiolipin. Furthermore, the extent of drug complexation by mitochondria and mitoplasts (inner membrane plus matrix) is in reasonable agreement with their cardiolipin content. In contrast, adriamycin-binding curves of inner membrane ghosts and submitochondrial particles reveal considerable association to an additional site, presumably RNA. The evidence for the potential importance of RNA as a target comes from experiments on outer membranes and microsomes which both appear to bind substantial amounts of adriamycin. Removal of the major part of the RNA associated with these fractions by EDTA treatment is accompanied by a dramatic reduction of binding capacity. We propose that endogenous RNA present in mitochondria and mitoplasts is not accessible for adriamycin at low concentrations of the drug due to the presence of an intact lipid barrier. This potential site comes to expression in ghosts and submitochondrial particles, due to the absence of an intact lipid bilayer and due to the inside-out orientation of the limiting membrane, respectively. Electron microscopical studies show that adriamycin induces dramatic changes in mitochondrial morphology, similar to the uncoupler-induced effects described by Knoll and Brdiczka (Biochim. Biophys. Acta 733, 102-110 (1983). Adriamycin has an uncoupling effect on mitochondrial respiration and oxidative phosphorylation. The concentration dependence of this effect correlates with the adriamycin-binding curve for mitochondria which implies that only bound adriamycin actively inhibits respiration.  相似文献   

8.
The binding of the mitochondrial creatine kinase to aqueous dispersions of beef heart cardiolipin has been studied via the perturbation of the mobility of spin-labelled cardiolipin, using electron spin resonance (ESR) spectroscopy. In the presence of creatine kinase (1:1 protein/lipid ratio, by mass), the ESR spectra of cardiolipin labelled in a single acyl chain [n-(4,4-dimethyl-oxazolidinyl-N- oxy)stearoylcardiolipin] indicate a restriction of motion both at the C-5 and C-14 positions (n = 5, 14) of the lipid chains. The restriction in mobility was reversed by addition of phosphate or adriamycin, which are thought to inhibit the binding of creatine kinase to the mitochondrial membrane or to displace it from its binding site on the membrane. The effect of the protein on the chain mobility is consistent with surface binding of the protein; no positive evidence was obtained for penetration of the protein into the hydrophobic region of the membrane.  相似文献   

9.
Lipid-depleted pig liver mitochondrial residues were incubated with different proportions of the acidic phospholipid cardiolipin and the zwitterionic phospholipid lecithin in either separate or mixed liposomes. When cardiolipin and lecithin were present in separate liposomes all of the cardiolipin but no lecithin bound to the residues. When present in the same liposomes, cardiolipin also caused binding of lecithin to the mitochondrial residues. When monoamine oxidase solubilized from pig liver mitochondria by extraction of the phospholipids was included in the incubation, binding of the enzyme to the residues occurred in the presence of cardiolipin. The percentage of enzyme bound followed the same trend as the binding of phospholipids to the mitochondrial residues.  相似文献   

10.
A large part of the hexokinase activity of the rat brain 20,000g supernatant became mitochondrial bound when incubated with rat heart mitochondria which had been pretreated with glucose-6-phosphate. This binding was dependent on small-molecular compounds (as yet unidentified) of the brain supernatant. Divalent cations, spermine, and pentalysine strongly stimulated the binding of brain supernatant hexokinase to heart mitochondria. Inorganic phosphate, alpha-glycerophosphate, and fructose-1,6-diphosphate showed some stimulatory effect. No effect was observed with insulin or glucose. Mitochondria isolated from hearts of fasted rats had less specific hexokinase activity than mitochondria from fasted and then carbohydrate refed rats. This dietary treatment had no significant effect on the total heart hexokinase activity. Oligomycin did not inhibit the formation of creatine phosphate or glucose-6-phosphate by isolated rabbit heart mitochondria incubated in the presence of phosphoenolpyruvate and pyruvate kinase. However, the presence of creatine inhibited the formation of glucose-6-phosphate when the ATP/ADP ratio was low, indicating that creatine kinase has a greater access to ATP/ADP translocation than has hexokinase.  相似文献   

11.
D Cheneval  M Müller  E Carafoli 《FEBS letters》1983,159(1-2):123-126
The phosphate carrier has been isolated from beef heart mitochondria in the presence of cardiolipin and reconstituted in asolectin vesicles. It has been found that 100 microM doxorubicin and 100 microM Br-daunomycin inhibit the unidirectional phosphate uptake in the reconstituted liposomes to the same extent as N-ethylmaleimide. The inhibition by Br-daunomycin is not due to covalent interaction with the carrier. The specific interaction between doxorubicin and cardiolipin is responsible for the inhibition of the phosphate carrier. Br-daunomycin interacts with 3 mitochondrial proteins of apparent Mr approximately 45 000, approximately 35 000 and approximately 30 000.  相似文献   

12.
The interaction of the antineoplastic agent adriamycin with sonicated liposomes composed of phosphatidylcholine alone and with small amounts (1-6%) of cardiolipin has been studied by fluorescence techniques. Equilibrium binding data show that the presence of cardiolipin increases the amount of drug bound to liposomes when the bilayer is below its phase transition temperature and when the ionic strength is relatively low (0.01 M). At higher ionic strength (0.15 M) and above the Tm (i.e. conditions which are closer to the physiological state) the binding of the drug to the two liposome types is nearly the same. Thus the differences in the interactions of adriamycin with cardiolipin-containing membranes, as opposed to those composed of phosphatidylcholine alone, are not due simply to increased binding but rather to an altered membrane structure when this lipid is present. Quenching of adriamycin fluorescence by iodide shows that bound drug is partially, but not completely, buried in the liposomal membrane. Both in the presence and absence of cardiolipin the bulk of the adriamycin is more accessible to the quencher below the Tm than above it; that is, a solid membrane tends to exclude the drug from deep penetration. Above the Tm, the presence of cardiolipin alters the nature of liposome-adriamycin interaction. Here the fluorescence quenching data suggest that the presence of small amounts of cardiolipin (3%) in a phosphatidylcholine matrix creates two types of binding environments for drug, one relatively exposed and the other more deeply buried in the membrane. The temperature dependence of the adriamycin fluorescence and the liposome light scattering reveal that cardiolipin alters the thermal properties of the bilayer as well as its interaction with adriamycin. At low ionic strength lateral phase separations may occur with both pure phosphatidylcholine and when 3% cardiolipin is present; under these conditions the bound adriamycin exists in two kinds of environment. It is notable that only adriamycin fluorescence reveals this phenomenon; thebulk property of liposome light scattering reports only on the overall membrane phase change. These data suggest that under certain conditions the drug binding sites in the membranes are decoupled from the bulk of the lipid bilayer.  相似文献   

13.
The kinetic properties of MM-isozyme of creatine phosphokinase (CPK) bound to heart myofibrils have been determined experimentally. It has been shown that CPK isozymes bound to the heart myofibrils and mitochondria are electrophoretically different, but have very similar kinetic properties. For both isozymes the ATP formation reaction is preferable. However, in heart mitochondria the kinetic properties of CPK are compensated for by a tight functional coupling with ATP-ADP translocase. Due to this coupling the ATP formed in the course of oxidative phosphorylation can be used completely for creatine phosphate production in mitochondria. On the other hand, the kinetic properties of myofibrillar CPK isozyme are such that they provide for the effective utilization of creatine phosphate produced in mitochondria for rephosphorylation of AKP formed in the myofibrils during contraction. It is concluded that in the heart cells energy can be transferred from the mitochondria to the myofibrils by creatine phosphate molecules.  相似文献   

14.
We show in this study that mitochondrial creatine kinase promotes segregation and clustering of cardiolipin in mixed membranes, a phenomenon that has been proposed to occur at contact sites in the mitochondria. This property of mitochondrial creatine kinase is dependent on the native octameric structure of the protein and does not occur after heat-denaturation or with the native dimeric form of the protein. Cardiolipin segregation was demonstrated by differential scanning calorimetry using membranes containing cardiolipin and either dipalmitoylphosphatidylethanolamine or 1-palmitoyl-2-oleoylphosphatidylethanolamine. Addition of the ubiquitous form of mitochondrial creatine kinase leads to the formation of a phosphatidylethanolamine-rich domain as a result of the protein binding preferentially to the cardiolipin. Such phase separation does not occur if cardiolipin is replaced with dioleoyl phosphatidylglycerol. Lipid phase separation is observed with other cardiolipin-binding proteins, including cytochrome c and, to a very small extent, with truncated Bid (t-Bid), as well as with the cationic polypeptide poly-L-lysine, but among these proteins the octameric form of mitochondrial creatine kinase is by far the most effective in causing segregation and clustering of cardiolipin. The proteins included in this study are found at mitochondrial contact sites where they are known to associate with cardiolipin. Domains in mitochondria enriched in cardiolipin play an important role in apoptosis and in energy flux processes.  相似文献   

15.
Phosphate extraction of heart mitochondria results in the release of creatine kinase. Under appropriate conditions phosphate-extracted mitochondria are able to rebind the creatine kinase, either from crude extracts or as the purified enzyme. Heart mitochondria are able to bind up to sevenfold more creatine kinase than they originally contained. The association is specific since the cytoplasmic isozyme from heart (MM) does not bind, and does not interfere with the binding of the mitochondrial isozyme even when MM is present in large excess. It is interesting that although liver mitochondria do not contain the mitochondrial isozyme of creatine kinase they are able to bind approximately the same amount of the enzyme as the heart mitochondria.  相似文献   

16.
Lon is an ATP-dependent serine protease that plays a significant role in the quality control of proteins in cells, degrading misfolded proteins and certain short-lived regulatory proteins under stresses as such heat-shock and UV irradiation. It is known that some polymers containing phosphate groups regulate enzymatic activity by binding with Lon. We focused on the phospholipids of biological membrane components such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and cardiolipin (CL), and examined whether or not liposomes containing these phospholipids regulate the enzymatic activity of Lon. CL-containing liposomes specifically inhibited both the proteolytic and ATPase activities of Lon in a dose-dependent manner. In addition, on pull-down assay, we found that CL-containing liposomes selectively bound to Lon. The interaction between CL-containing liposomes and Lon changed with the order of addition of Mg(2+)/ATP. When CL-containing liposomes were added after the addition of Mg(2+)/ATP to Lon, the binding of CL-containing liposomes to Lon was significantly decreased as compared with the reversed order. In fact, we found that CL-containing liposomes bound to Lon, resulting in inhibition of the enzymatic activity of Lon. These results suggest that Lon interacts with CL in biological membranes, which may regulate the functions of Lon as a protein-degrading centre in accordance with environmental changes inside cells.  相似文献   

17.
We have evaluated surface plasmon resonance with avidin-biotin immobilized liposomes tocharacterize membrane binding of ubiquitous mitochondrial creatine kinase (uMtCK). Whilethe sarcomeric sMtCK isoform is well known to bind to negatively charged phospholipids,especially cardiolipin, this report provides the first experimental evidence on the membraneinteraction of an uMtCK isoform. Qualitative measurements showed that liposomes containing16% (w/w) cardiolipin bind octameric as well as dimeric human uMtCK and also cytochromec, but not bovine serum albumin. Quantitative parameters could be derived only for themembrane interaction of octameric human uMtCK using an improved analytical approach.Association and dissociation kinetics of octameric uMtCK fit well to a model for heterogeneousinteraction suggesting two independent binding sites. Rate constants of the two sites differedby one order of magnitude, while their affinity constants were both about 80–100 nM. Thedata obtained demonstrate that surface plasmon resonance with immobilized liposomes is asuitable approach to characterize the binding of peripheral proteins to a lipid bilayer and thatthis method yields consistent quantitative binding parameters.  相似文献   

18.
The precursors of secretory proteins were synthesized in a reticulocyte lysate system programmed with rat serum albumin or human placental lactogen mRNA and their interaction with phospholipids in liposomes was studied. The precursor proteins could bind to acidic phospholipids that have an exposed phosphate such as dicetyl phosphate and phosphatidic acid or a phosphate that is covered by a small moiety such as phosphatidylglycerol. The binding of precursor proteins was dependent on the mol% of acidic phospholipids in lecithin-liposomes, increased with elevation of temperature in the range of 0 to 45 degrees C, and was not inhibited by the addition of a large excess of mature proteins. Mature proteins or proalbumin showed no significant binding to the liposomes containing acidic phospholipids. About 15% of the acid-precipitable radioactivity bound to the liposomes was resistant to protease digestion. This radioactivity was shown to correspond to methionine-containing peptides with molecular weights of 2,500 to 3,500. These results indicate that the post-translational insertion of a small part of the precursor proteins into the membrane did occur with the present model system, but the post-translational transfer of precursor proteins across the membrane did not.  相似文献   

19.
Galig, a gene embedded within the galectin-3 gene, induces cell death when transfected in human cells. This death is associated with cell shrinkage, nuclei condensation, and aggregation of mitochondria. Galig contains two different overlapping open reading frames encoding two unrelated proteins. Previous observations have shown that one of these proteins, named mitogaligin, binds to mitochondria and promotes the release of cytochrome c. However, the mechanism of action of this cytotoxic protein remains still obscure. The present study provides evidence that synthetic peptides enclosing the mitochondrial localization signal of mitogaligin bind to anionic biological membranes leading to membrane destabilization, aggregation, and content leakage of mitochondria or liposomes. This binding to anionic phospholipids is the most efficient when cardiolipin, a specific phospholipid of mitochondria, is inserted in the membranes. Thus, cardiolipin may constitute a target of choice for mitogaligin sorting and membrane destabilization activity.  相似文献   

20.
The stoichiometry and dissociation constant for the binding of homogeneous chicken heart mitochondrial creatine kinase (MiMi-CK) to mitoplasts was examined under a variety of conditions. Salts and substrates release MiMi-CK from mitoplasts in a manner that suggests an ionic interaction. The binding of MiMi-CK to mitoplasts is competitively inhibited by Adriamycin, suggesting that they compete for the same binding site. Fluorescence measurements also show that Adriamycin binds to MiMi-CK so that the effect of Adriamycin on the binding of MiMi-CK to mitoplasts is not simple. Titrating mitoplasts with homogeneous MiMi-CK at different pH values shows a pH-dependent equilibrium involving a group(s) on either the membrane or the enzyme with a pKa = 6. Extrapolating these titrations to infinite MiMi-CK concentration gives 14.6 IU bound/nmol cytochrome aa3 corresponding to 1.12 mol MiMi-CK/mol cytochrome aa3. Chicken heart mitochondria contain, after isolation, 2.86 +/- 0.42 IU/nmol cytochrome aa3. Titrating respiring mitoplasts with carboxyatractyloside gives at saturation 3.3 mol ADP/ATP translocase/mol cytochrome aa3. Therefore, chicken heart mitoplasts can maximally bind about 1 mol of MiMi-CK per 3 mol translocase; in normal chicken heart mitochondria about 1 mol of MiMi-CK is present per 13 mol translocase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号