首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subcellular distribution of the alpha 2-adrenergic receptor, pertussis-toxin substrates (Gi, the inhibitory G-protein) and adenylate cyclase was determined in human platelets. The alpha 2-adrenergic receptor and pertussis-toxin substrate activity codistribute with surface membranes identified by a novel fluorescent-lectin method. The platelet granule fractions did not contain detectable Gi. Only 2-4% of the total pertussis-toxin substrate activity appears in soluble fractions, and this amount was not increased upon addition of purified beta gamma units or after pretreatment of platelets with adrenaline. There is no evidence for compartmentation of the alpha 2-adrenergic receptor or Gi to account for the low-affinity component of agonist binding to the alpha 2-adrenergic receptor in human platelet membranes. Translocation of Gi from plasma membrane to platelet cytosol or granules does not appear to play any significant role in the mechanism of alpha 2-receptor-mediated platelet activation.  相似文献   

2.
Desensitization of the beta-adrenergic receptor, a receptor which is coupled to the stimulation of adenylate cyclase, may be regulated via phosphorylation by a unique protein kinase. This recently discovered enzyme, known as the beta-adrenergic receptor kinase, only phosphorylates the agonist-occupied form of the beta-adrenergic receptor. To assess whether receptors coupled to the inhibition of adenylate cyclase might also be substrates, we examined the effects of beta-adrenergic receptor kinase on the partially purified human platelet alpha 2-adrenergic receptor. Phosphorylation of the reconstituted alpha 2-adrenergic receptor was dependent on agonist occupancy and was completely blocked by coincubation with alpha 2-antagonists. The time course of phosphorylation of the alpha 2-adrenergic receptor was virtually identical to that observed with the beta-adrenergic receptor with maximum stoichiometries of 7-8 mol of phosphate/mol of receptor in each case. In contrast, the alpha 1-adrenergic receptor, which is coupled to stimulation of phosphatidylinositol hydrolysis, is not a substrate for the beta-adrenergic receptor kinase. These results suggest that receptors coupled to either stimulation or inhibition of adenylate cyclase may be regulated by an agonist-dependent phosphorylation mediated by the beta-adrenergic receptor kinase.  相似文献   

3.
Human platelet alpha 2-adrenergic receptors have been purified approximately 80,000-fold to apparent homogeneity by a five-step chromatographic procedure. The overall yield starting from the membranes is approximately 2%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioiodinated protein from purified receptor preparations shows a single major band of Mr 64,000. The specific binding activity of the alpha 2-adrenergic receptor after four chromatographic steps is 14.5 nmol/mg protein. This value is consistent with the expected theoretical specific activity (15.6 nmol/mg) for a protein with a molecular mass of 64,000 daltons if it is assumed that there is one ligand-binding site/receptor molecule. The purified protein can be covalently labeled with the alkylating alpha-adrenergic ligand, [3H]phenoxybenzamine. This labeling is specific, and it shows that the Mr 64,000 protein contains the ligand binding site of the alpha 2-adrenergic receptor. In addition, the competitive binding of ligands to the purified receptor protein shows the proper alpha 2-adrenergic specificity. The alpha 2-adrenergic receptor contains an essential sulfhydryl residue. Thus, exposure of the purified receptor to the sulfhydryl-specific reagent, phenylmercuric chloride, resulted in an 80% loss of binding activity. This loss of binding activity was prevented when exposure to phenylmercuric chloride was done in the presence of alpha 2-adrenergic ligands, and it was reversed by subsequent exposure to dithiothreitol. Partial proteolysis of purified alpha 2-adrenergic receptors was obtained with Staphylococcus aureus V-8 protease, alpha-chymotrypsin, and papain. In a comparison with purified beta 2-adrenergic receptors, no common partial proteolytic products were found.  相似文献   

4.
The gene for an alpha 2-adrenergic receptor has been cloned from a porcine genomic library, using as a probe a 0.95-kilobase Pst fragment of the gene for the human platelet alpha 2-adrenergic receptor. The identity of the cloned porcine gene was confirmed initially on the basis of partial amino acid sequence information obtained following cyanogen bromide digestion of homogeneous preparations of porcine brain alpha 2-adrenergic receptors. The deduced amino acid sequence for the porcine receptor, when compared to other members of the family of guanine nucleotide-binding protein-coupled receptors, shares the same overall structural characteristics and most closely resembles the human platelet C10 alpha 2-adrenergic receptor (greater than 93% homology). The putative porcine alpha 2-receptor gene was expressed in the COS-M6 cell line. Transfected cells display saturable [3H]yohimbine binding. The KD for [3H]yohimbine, determined in digitonin-solubilized preparations, is 5.8 nM. The selectivity of agonists and antagonists in competing for [3H]yohimbine binding to membranes prepared from the transfected cells is characteristic of the alpha 2A subtype of adrenergic receptors. The porcine alpha 2-receptor also was expressed permanently in LLC-PK1 porcine kidney cells at a level of 100 pmol/mg protein. The alpha 2-agonist UK14304 is able to attenuate forskolin or vasopressin-stimulated cAMP accumulation by at least 50% in these cells. Allosteric modulation of [3H] yohimbine binding by Na+, H+, and 5-amino-substituted analogs of amiloride also was demonstrated for the alpha 2-receptor expressed in COS-M6 cells. Moreover, these modulatory effects were quantitatively similar to those observed for homogeneous preparations of the alpha 2-receptor purified from porcine brain cortex. Retention of the effects of cations and amiloride analogs in transiently expressed alpha 2-receptors supports the interpretation that the allosteric sites for these agents reside in the alpha 2-receptor molecule itself.  相似文献   

5.
Identification of structurally distinct alpha 2-adrenergic receptors   总被引:4,自引:0,他引:4  
Recent studies involving a variety of membrane receptors and ion channels indicate that diversity exists among these proteins as evidenced by tissue-specific and developmentally related expression of different isoforms. Alpha 2-Adrenergic receptors, plasma membrane proteins involved in sympathetic neurotransmission, may similarly represent a nonhomogeneous class of binding sites based on the following observations. First, their activation can elicit a wide variety of effector cell responses, which are apparently triggered by at least three different signal transduction mechanisms. Second, alpha 2-adrenergic receptors in various tissues and species exhibit marked differences in their ligand recognition properties. To determine if heterogeneity of the receptor protein itself is involved in generating this diversity, we structurally characterized the alpha 2-adrenergic receptor in two tissues that exhibit the greatest differences in ligand recognition properties, neonatal rat lung and human platelet. We report here that these differences in ligand recognition are maintained after partial receptor purification (50-100-fold) and are associated with distinct differences in the physical and structural properties of the receptor protein. The human platelet and neonatal rat lung receptor differ in the apparent molecular weight of their hormone-binding subunits (human platelet, Mr approximately 64,000 versus neonatal rat lung, Mr approximately 44,000) as well as in the number or type of their associated oligosaccharide moieties. The observed diversity is consistent with expression of isoforms of the alpha 2-adrenergic receptor and suggests the presence of more than one gene encoding similar but distinct receptor proteins.  相似文献   

6.
We have generated, by transfection and proper selection, a stable mouse C127 cell line which expresses the human alpha 2-adrenergic receptor gene. The size of the mRNA produced by the cloned gene is 1.8 kb. Electrophoretic analysis and autoradiography of cell membrane proteins photoaffinity labeled with p-[3H]azidoclonidine gave a broad protein band of molecular mass of approx. 64 kDa. Saturation binding with [3H]rauwolscine as ligand gave an equilibrium dissociation constant of 1.29 +/- 0.46 nM (mean +/- S.D.) and binding capacity range of 18-35 pmol/mg membrane protein, with (3-6) x 10(6) receptors per cell. Antagonist competition experiments displayed the order of potency: yohimbine greater than rauwolscine greater than phentolamine much greater than prazosin. Agonist competitions demonstrated the order of potency: p-aminoclonidine greater than (-)epinephrine much greater than (+)epinephrine much greater than (-)isoproterenol. This pharmacological profile is characteristic of the human platelet alpha 2-adrenergic receptor. The expressed receptor is able to couple to the Gi protein. Thus, when epinephrine competition for specific binding of [3H]rauwolscine was performed in the presence of 1 mM MgCl2, 1 mM Gpp[NH]p increased the Ki for epinephrine from 164 to 315 nM. Following preincubation of cultures with 1 mM isobutylmethylxanthine, 1 microM epinephrine decreased forskolin-stimulated cellular cyclic AMP accumulation by 72%. The response was biphasic, and the attenuation effect disappeared at 100 microM epinephrine. A transfected clone which did not demonstrate detectable alpha 2-adrenergic receptor mRNA displayed low levels of alpha 2-adrenergic receptor, (less than 50 fmol/mg membrane protein), similar to those found in the parent C127 cell line. In this clone, epinephrine did not attenuate but, rather, enhanced forskolin-stimulated cyclic AMP accumulation. This new C127 cell line expressing high levels of alpha 2-adrenergic receptor provides an abundant source of a single human adrenergic receptor subtype in membrane-bound conformation which is able to couple to the Gi protein and inhibit forskolin-stimulated adenylate cyclase activity. This cell line will facilitate studies of the structure: function relationship of the alpha 2-adrenergic receptor and should aid in separating the components of various signal transduction mechanisms putatively attributed to this receptor.  相似文献   

7.
alpha(2A)-Adrenergic receptor-mediated Ca(2+) signaling and integrin alpha(IIb)beta(3) exposure were investigated in human platelets under conditions where indirect, thromboxane- or ADP-mediated effects were absent. The alpha(2)-adrenergic receptor agonists, UK14304 and epinephrine (EPI), were unable to raise cytosolic levels of inositol 1,4,5-trisphosphate (InsP(3)) or Ca(2+) but potentiated the [Ca(2+)](i) rises evoked by other agonists that act through stimulation of phospholipase C (thrombin or platelet-activating factor) or stimulation of Ca(2+)-induced Ca(2+) release (CICR) in the absence of InsP(3) generation (thimerosal or thapsigargin). In addition, alpha(2)-adrenergic stimulation resulted in a 20% lowering in the cytosolic cAMP level. In platelets treated with G(salpha)-stimulating prostaglandin E(1), EPI increased the Ca(2+) signal evoked by either phospholipase C- or CICR-stimulating agonists mainly through modulation of the cAMP level. The stimulating effects of UK14304 and EPI on platelet Ca(2+) responses, and also on integrin alpha(IIb)beta(3) exposure and platelet aggregation, were abolished by pharmacological stimulation of cAMP-dependent protein kinase, and these effects were mimicked by inhibition of this activity. In permeabilized platelets, UK14304 and EPI potentiated InsP(3)-induced, CICR-mediated mobilization of Ca(2+) from internal stores in a similar way as did inhibition of cAMP-dependent protein kinase. In summary, a G(ialpha)-mediated decrease in cAMP level appears to play a major role in the platelet-activating effects of alpha(2A)-adrenergic receptor stimulation. Thus, in platelets, unlike other cell types, occupation of the G(ialpha)-coupled alpha(2A)-adrenergic receptors does not result in phospholipase C activation but rather in modulation of the Ca(2+) response by relieving cAMP-mediated suppression of InsP(3)-dependent CICR.  相似文献   

8.
Stimulation of DDT1 MF-2 vas deferens cells with epinephrine resulted in a time- and dose-dependent loss of alpha 1-adrenergic receptor-specific ligand binding. Regulation of alpha 1-adrenergic receptor mRNA was characterized. In monolayer culture, cells displayed 0.7 +/- 0.05 amol of alpha 1-adrenergic receptor mRNA/microgram of total cellular RNA. Epinephrine, which acts at both alpha 1- and beta 2-adrenergic receptors of DDT1 MF-2 cells, induced a short term (2-8 h) increase (50-70%) in the abundance of alpha 1-adrenergic receptor mRNA. Propranolol, a beta 2-adrenergic receptor antagonist, attenuated the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA but did not affect the decrease in alpha 1-adrenergic receptor-specific ligand binding. Phentolamine, an alpha 1-adrenergic receptor antagonist, did not attenuate the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA at 4 h but did block the decrease in alpha 1-adrenergic receptor-specific ligand binding. The half-life of the alpha 1-adrenergic receptor mRNA was approximately 7 h in untreated cells as well as in cells challenged with epinephrine. The epinephrine-promoted increase in alpha 1-adrenergic receptor mRNA was found to result from cross-regulation via beta 2-adrenergic receptors. Cholera toxin, forskolin, as well as the cyclic AMP analog CPT cAMP (8-(4-chlorophenylthio)adenosine 3':5'-cyclic monophosphate) increased the alpha 1-adrenergic receptor mRNA at 4 h, as did epinephrine in the presence of alpha 1-antagonists but not in the presence of a beta-adrenergic antagonist. This is the first report of heterologous up-regulation of mRNA levels of adrenergic receptors. Cross-regulation between alpha 1- and beta 2-adrenergic receptor-mediated pathways at 4 h occurs at the level of mRNA whereas later down-regulation of alpha 1-receptor mRNA and binding proceed via agonist activation of alpha 1-adrenergic receptors.  相似文献   

9.
alpha 1-Adrenergic receptors from a cultured smooth muscle cell line (DDT1 MF-2) have been solubilized with digitonin and purified to apparent homogeneity by sequential chromatography on a biospecific affinity support (Sepharose-A55453 (4-amino-6,7-dimethoxy-2-[4-[5-(4-amino-3-phenyl) pentanoyl]-1-piperazinyl]-quinazoline), an alpha 1 receptor-selective antagonist), a wheat germ agglutinin-agarose gel, and a high performance steric exclusion liquid chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of iodinated purified receptor preparations reveals a peptide with an apparent Mr = 80,000 that co-migrates with the peptide labeled by the specific alpha 1-adrenergic receptor photoaffinity probe 4-amino-6,7-dimethoxy-2-[4-[5-(4-azido-3-[125I]iodophenyl)pentanoyl] -1-piperazinyl] quinazoline. The specific activity (approximately 13,600 pmol of ligand binding/mg of protein) of purified receptor preparations is consistent with that expected for a pure peptide of Mr = 80,000 containing a single ligand binding site. Overall yields approximate 14% of initial crude particulate binding. The purified receptor preparations bind agonist and antagonist ligands with appropriate alpha 1-adrenergic specificity, stereoselectivity, and affinity. Peptide maps of the pure alpha 1-adrenergic receptor and the pure human platelet alpha 2-adrenergic receptor (Regan, J.W., Nakata, H., DeMarinis, R.M., Caron, M.G., and Lefkowitz, R.J. (1986) J. Biol. Chem. 261, 3894-3900) using several different proteases suggest that these two receptors show little if any structural homology.  相似文献   

10.
Previous reports from this laboratory have demonstrated that alpha 2-adrenergic receptors accelerate Na+/H+ exchange in NG108-15 neuroblastoma X glioma cells and evoke platelet secretion via a pathway involving Na+/H+ exchange. The present studies were designed to examine whether agents that interact with Na+/H+ antiporters also might influence alpha 2-adrenergic receptor-ligand interactions. We observed that Na+ decreases receptor affinity for the agonists epinephrine, norepinephrine, and UK14304 and slightly increases receptor affinity for the antagonists yohimbine and idazoxan in digitonin-solubilized preparations from porcine brain cortex. Increases in [H+] also decrease receptor affinity for agonists and cause either a slight increase or no change in receptor affinity for antagonists. Amiloride analogs accelerate the rate of [3H] yohimbine dissociation from digitonin-solubilized receptors with a relative effectiveness that parallels their ability to block Na+/H+ exchange in other systems. Interestingly, these modulatory effects of Na+,H+ and 5-amino-substituted analogs of amiloride are retained in homogeneous preparations of the alpha 2-adrenergic receptor, suggesting that the allosteric-binding sites for these agents are on the receptor-binding protein itself.  相似文献   

11.
R R Ruffolo  J E Waddell 《Life sciences》1982,31(26):2999-3007
The alpha 1- and alpha 2-adrenergic effects of the stereoisomers of alpha-methyldopamine were evaluated in guinea pig aorta and field-stimulated guinea pig ileum, respectively, in order to establish the stereochemical requirements of these receptors for alpha-methyl substituted phenethylamines. The alpha 1-adrenergic receptor did not distinguish between the stereoisomers of alpha-methyldopamine which is in marked contrast to the alpha 2-adrenergic receptor where a dramatic stereochemical preference for the 2S(+)-isomer was observed. In addition, 2R(-)-alpha-methyldopamine displayed no alpha-receptor subtype specificity whereas 2S(+)-alpha-methyldopamine was highly selective (23 fold) for the alpha 2-adrenergic receptor. These results indicate that the alpha 2-adrenergic receptor can recognize and accept methyl substituents at the alpha-carbon atom of phenethylamines when correctly oriented, while the alpha 1-adrenergic receptor cannot. Thus, the alpha-carbon atom is a major determinant of the alpha 2-adrenergic effects of phenethylamines, and plays an important role in determining alpha-receptor subtype specificity. It is hypothesized that the alpha 2-adrenergic receptor (but not alpha 1) has an additional recognition site which will accommodate alpha-substituted phenethylamines.  相似文献   

12.
This review highlights the increasing knowledge of the biochemistry, pathology, and cell and molecular biology of platelet receptors. A receptor for ADP has been identified using the affinity label FSBA as aggregin, a 100-kDa membrane protein responsible for shape change, aggregation, and exposure of fibrinogen binding sites. A variety of putative receptors for collagen have been described, with GPIa/IIa and GPIV receiving the most attention recently. A thromboxane A2 receptor has been identified using receptor antagonists and photoaffinity labels. The alpha 2-adrenergic receptor has been cloned and expressed. The platelet thrombin receptor has been tentatively identified as GPIb. Following binding of thrombin to this receptor, activation of calpain occurs, with cleavage of aggregin leading to exposure of GPIIb/III alpha and platelet aggregation. Isolation, expression, or both of the ADP, collagen, and thrombin receptors as single gene products of the human platelet responsible for activation, and more complete understanding of stimulus-response coupling, should allow for greater specificity of drugs with selective therapeutic actions.  相似文献   

13.
Several new clonidine analogs were synthesized and their ability to inhibit [3H]phentolamine binding to human platelet alpha 2-adrenergic receptors was tested. The order of potency and calculated dissociation constants for clonidine and its analogs were as follows: clonidine (0.020 +/- 0.005 microM) greater than p-aminoclonidine (0.100 +/- 0.010 microM) greater than hydroxy-phenacetyl-aminoclonidine (0.20 +/- 0.03 microM) greater than p-dansyl clonidine (1.00 +/- 0.20 microM) greater than t-boc-tyrosine clonidine (1.80 +/- 0.60 microM). Thus, p-amino substitution reduces alpha 2-adrenergic affinity in the platelet system. The effects of clonidine and its p-amino analogs on platelet adenylate cyclase were also evaluated. This enzyme is inhibited by epinephrine acting via alpha 2-adrenergic receptors. Both clonidine and p-aminoclonidine cause slight inhibition of basal adenylate cyclase and reverse the inhibition induced by epinephrine. These observations indicate that clonidine is a partial agonist for platelet alpha 2-adrenergic receptors.  相似文献   

14.
alpha 2-Adrenergic receptors were identified in calf brain, human platelet and human uterus membranes by [3H]-rauwolscine binding. The reagents phenylglyoxal (selective for guanidino groups), p- hydroxy mercuribenzoate and N-ethylmaleimide (selective for sulfhydryl groups) caused a time- and dose- dependent decrease in the number of receptor sites. alpha 2-Adrenergic agonists and antagonists mediated efficient protection of the receptors against these reagents. These data suggest that essential arginine and cysteine residues are present at or near the alpha 2-adrenergic binding site.  相似文献   

15.
The alpha 1-adrenergic receptor ligand, 3H-WB4101, and the alpha 2-adrenergic receptor ligand, 3H-para-aminoclonidine, were utilized at a 1.0 nM incubation concentration to determine relative alpha 1-and alpha 2-adrenergic receptor binding by cell membranes from selected tissues within the brain, ovary and oviduct of the domestic fowl. Significant specific alpha 1-adrenergic binding was observed in the hypothalamus, anterior pituitary, pineal, cerebrum and cerebellum but only the cerebrum had significant alpha 2-receptor binding. Significant levels of alpha 1-adrenergic binding were observed in the granulosa cells of the three largest ovarian follicles and in the postovulatory follicle. Significant specific alpha 2-adrenergic binding was measured in the infundibulum, magnum, isthmus and shell gland of the oviduct. The physiological implications of alpha-adrenergic receptors in these tissues are discussed.  相似文献   

16.
Thromboxane A(2) is a positive feedback lipid mediator produced following platelet activation. The G(q)-coupled thromboxane A(2) receptor subtype, TPalpha, and G(i)-coupled TPbeta subtype have been shown in human platelets. ADP-induced platelet aggregation requires concomitant signaling from two P2 receptor subtypes, P2Y1 and P2T(AC), coupled to G(q) and G(i), respectively. We investigated whether the stable thromboxane A(2) mimetic, (15S)-hydroxy-9, 11-epoxymethanoprosta-5Z,13E-dienoic acid (U46619), also causes platelet aggregation by concomitant signaling through G(q) and G(i), through co-activation of TPalpha and TPbeta receptor subtypes. Here we report that secretion blockade with Ro 31-8220, a protein kinase C inhibitor, completely inhibited U46619-induced, but not ADP- or thrombin-induced, platelet aggregation. Ro 31-8220 had no effect on U46619-induced intracellular calcium mobilization or platelet shape change. Furthermore, U46619-induced intracellular calcium mobilization and shape change were unaffected by A3P5P, a P2Y1 receptor-selective antagonist, and/or cyproheptadine, a 5-hydroxytryptamine subtype 2A receptor antagonist. Either Ro 31-8220 or AR-C66096, a P2T(AC) receptor selective antagonist, abolished U46619-induced inhibition of adenylyl cyclase. In addition, AR-C66096 drastically inhibited U46619-mediated platelet aggregation, which was further inhibited by yohimbine, an alpha(2A)-adrenergic receptor antagonist. Furthermore, inhibition of U46619-induced platelet aggregation by Ro 31-8220 was relieved by activation of the G(i) pathway by selective activation of either the P2T(AC) receptor or the alpha(2A)-adrenergic receptor. We conclude that whereas thromboxane A(2) causes intracellular calcium mobilization and shape change independently, thromboxane A(2)-induced inhibition of adenylyl cyclase and platelet aggregation depends exclusively upon secretion of other agonists that stimulate G(i)-coupled receptors.  相似文献   

17.
A simple large-scale purification of alpha 2-adrenergic receptor-enriched membranes from human platelets is described. Binding of the antagonist [3H]yohimbine is enriched 3-5-fold compared to a crude membrane fraction. Binding of low concentrations of the partial agonist 3-H-rho-aminoclonidine is increased 15-20-fold due to a higher binding affinity for the purified membranes. A soluble inhibitor of 3H-rho-aminoclonidine binding to purified membranes is found even in thrice-washed crude platelet membranes. The guanine nucleotides GDP and GTP are found to account for this inhibitory activity. Forskolin-stimulated adenylate cyclase activity is also enriched in the purified membrane fraction. Adenylate cyclase activity is inhibited by alpha 2-agonist to a comparable extent in all membrane fractions. This membrane preparation should prove useful in studies of alpha 2-adrenergic receptor mechanisms.  相似文献   

18.
The human platelet alpha 2-adrenergic receptor is an integral membrane protein which binds epinephrine. The gene for this receptor has been cloned, and the primary structure is thus known [Kobilka et al. (1987) Science 238, 650-656]. A model of its secondary structure predicts that the receptor has seven transmembrane spanning domains. By covalent labeling and peptide mapping, we have identified a region of the receptor that is directly involved with ligand binding. Partially purified preparations of the receptor were covalently radiolabeled with either of two specific photoaffinity ligands: [3H]SKF 102229 (an antagonist) or p-azido[3H]clonidine (an agonist). The radiolabeled receptors were then digested with specific endopeptidases, and peptides containing the covalently bound radioligands were identified. Lysylendopeptidase treatment of [3H]SKF 102229 labeled receptor yielded one peptide of Mr 2400 as the product of a complete digest. Endopeptidase Arg-C gave a labeled peptide of Mr 4000, which was further digested to the Mr 2400 peptide by additional treatment with lysylendopeptidase. Using p-azido[3H]clonidine-labeled receptor, a similar Mr 2400 peptide was obtained by lysylendopeptidase cleavage. This Mr 2400 peptide corresponds to the fourth transmembrane spanning domain of the receptor. These data suggest that this region forms part of the ligand binding domain of the human platelet alpha 2-adrenergic receptor.  相似文献   

19.
A procedure has been developed for purification of the porcine brain alpha 2-adrenergic receptor to homogeneity. alpha 2-Adrenergic receptors were solubilized from porcine brain particulate preparations using sequential extraction into sodium cholate- and digitonin-containing buffers. The alpha 2-adrenergic receptors in the digitonin extract were identified using the alpha 2-adrenergic selective antagonist, [3H]yohimbine, and demonstrated the same specificity for interaction with adrenergic ligands as did the receptors in particulate preparations. Extraction into digitonin-containing buffers eliminated the modulation of receptor-agonist interactions by guanine nucleotides, but not by monovalent cations. A novel affinity resin, yohimbine-agarose, was synthesized and used for purification of alpha 2-adrenergic receptors. Using two sequential yohimbine-agarose affinity chromatography steps, digitonin-solubilized alpha 2-adrenergic receptors from porcine brain cortex were purified to homogeneity as assessed by radioiodination and silver stain analysis of these preparations on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified alpha 2-adrenergic receptor has an approximate Mr = 65,000, as determined by photolabeling of the adrenergic ligand-binding subunit. The yohimbine-agarose affinity resin should be useful for purifying quantities of receptor sufficient for studies of receptor structure and function.  相似文献   

20.
Alpha2-adrenergic receptor agonists exert potent analgesic and sedative/hypnotic effects. In addition, they have been shown to be neuroprotective, but the mechanisms of these actions are still poorly defined. To isolate proteins that may control alpha2-adrenergic receptor function or trafficking, we performed a two-hybrid screen using the carboxy-terminal fourth intracellular tail of the alpha2A-adrenergic receptor as bait. This screen identified the amyloid precursor like protein 1 (APLP1), a homologue of the beta-amyloid precursor protein involved in Alzheimer's disease, as alpha2A-adrenergic receptor-binding protein. GST affinity chromatography revealed that APLP1 specifically interacts with all three human alpha2-adrenergic receptor subtypes and deletion mutant analysis confined the APLP1 domain involved in binding to alpha2-adrenergic receptors to the 13 amino acid residues Ser599-Ala611. Coimmunoprecipitations of transiently transfected cells with epitope-tagged APLP1 and alpha2-adrenergic receptors confirmed the interaction. Agonist treatment tended to increase the amount of alpha2A-adrenergic receptor associated with APLP1 while coimmunoprecipitations were not affected by the state of receptor phosphorylation or cotransfection of arrestin-3. Confocal laser microscopy showed that APLP1 causes a considerable shift of the alpha2A-adrenergic receptor localization from plasma membrane to intracellular compartments. Furthermore, cotransfection of alpha2A-adrenergic receptor and APLP1 into HEK293 cells significantly increased norepinephrine mediated inhibition of adenylate cyclase activity. These results suggest a possible role of APLP1 in regulation of alpha2A-adrenergic receptor trafficking. Moreover, we speculate that this interaction may present one mechanism by which alpha2-adrenergic receptor agonists exert their neuroprotective effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号