首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Exposure of cardiac myocytes to hyposmotic solution stimulates slowly-activating delayed-rectifying K(+) current (I(Ks)) via unknown mechanisms. In the present study, I(Ks) was measured in guinea-pig ventricular myocytes that were pretreated with modulators of cell signaling processes, and then exposed to hyposmotic solution. Pretreatment with compounds that (i) inhibit serine/threonine kinase activity (10-100 microM H89; 200 microM H8; 50 microM H7; 1 microM bisindolylmaleimide I; 10 microM LY294002; 50 microM PD98059), (ii) stimulate serine/threonine kinase activity (1-5 microM forskolin; 0.1 microM phorbol-12-myristate-13-acetate; 10 microM acetylcholine; 0.1 microM angiotensin II; 20 microM ATP), (iii) suppress G-protein activation (10 mM GDPbetaS), or (iv) disrupt the cytoskeleton (10 microM cytochalasin D), had little effect on the stimulation of I(Ks) by hyposmotic solution. In marked contrast, pretreatment with tyrosine kinase inhibitor tyrphostin A25 (20 microM) strongly attenuated both the hyposmotic stimulation of I(Ks) in myocytes and the hyposmotic stimulation of current in BHK cells co-expressing Ks channel subunits KCNQ1 and KCNE1. Since attenuation of hyposmotic stimulation was not observed in myocytes and cells pretreated with inactive tyrphostin A1, we conclude that TK has an important role in the response of cardiac Ks channels to hyposmotic solution.  相似文献   

3.
The purpose of this study was to determine whether protein tyrosine kinase, a ubiquitous family of intracellular signaling enzymes that regulates endothelial cell function, modulates bradykinin- and substance P-induced increase in macromolecular efflux from the intact hamster cheek pouch microcirculation. Using intravital microscopy, I found that suffusion of bradykinin or substance P (each, 0.5 and 1.0 microM) onto the cheek pouch elicited significant, concentration-dependent leaky site formation and increase in clearance of fluorescein isothiocyanate-dextran (FITC-dextran; molecular mass, 70 kDa; P < 0.05). These responses were significantly attenuated by suffusion of genistein (1.0 microM) or tyrphostin 25 (10 microM), two structurally unrelated, nonspecific protein tyrosine kinase inhibitors (P < 0.05). Conceivably, the kinase(s) involved in this process could be agonist specific because genistein was more effective than tyrphostin 25 in attenuating bradykinin-induced responses while the opposite was observed with substance P. Both inhibitors had no significant effects on adenosine (0.5 M)-induced responses (P > 0.5). Collectively, these data suggest that the protein tyrosine kinase metabolic pathway modulates, in part, the edemagenic effects of bradykinin and substance P in the intact hamster cheek pouch microcirculation in a specific fashion.  相似文献   

4.
The purpose of this study was to determine whether inhibitors of tyrosine kinase attenuate vasodilation elicited by endogenously elaborated and exogenously applied nitric oxide in the in situ peripheral microcirculation. Using intravital microscopy, we found that pretreatment with genistein (1.0 microM) and tyrphostin 25 (10.0 microM), two structurally unrelated tyrosine kinase inhibitors, significantly attenuated acetylcholine-, bradykinin- and nitroglycerin-induced dilation of second-order arterioles (51 +/- 1 microm) in the in situ hamster cheek pouch (P < 0.05). Both inhibitors nearly abrogated acetylcholine-induced responses but only partially blocked bradykinin- and nitroglycerin-induced vasodilation. Genistein and tyrphostin 25 alone had no significant effects on resting arteriolar diameter and on adenosine-induced vasodilation in the cheek pouch. On balance, these data indicate that tyrosine kinase inhibitors attenuate endogenously elaborated and exogenously applied nitric oxide-induced vasodilation in the in situ hamster cheek pouch. However, the extent of tyrosine kinase inhibitor-sensitive pathway involvement in this response appears to be agonist dependent.  相似文献   

5.
ABSTRACT: BACKGROUND: Evidence exists that oxidative stress promotes the tyrosine phosphorylation of N-methyl-D-aspartate receptor (NMDAR) subunits during post-ischemic reperfusion of brain tissue. Increased tyrosine phosphorylation of NMDAR NR2A subunits has been reported to potentiate receptor function and exacerbate NMDAR-induced excitotoxicity. Though the effect of ischemia on tyrosine phosphorylation of NMDAR subunits has been well documented, the oxidative stress signaling cascades mediating the enhanced tyrosine phosphorylation of NR2A subunits remain unclear. RESULTS: We report that the reactive oxygen species (ROS) generator NADPH oxidase mediates an oxidative stress-signaling cascade involved in the increased tyrosine phosphorylation of the NR2A subunit in post-ischemic differentiated SH-SY5Y neuroblastoma cells. Inhibition of NADPH oxidase attenuated the increased tyrosine phosphorylation of the NMDAR NR2A subunit, while inhibition of ROS production from mitochondrial or xanthine oxidase sources failed to dampen the post-ischemic increase in tyrosine phosphorylation of the NR2A subunit. Additionally, inhibition of NADPH oxidase blunted the interaction of activated Src Family Kinases (SFKs) with PSD-95 induced by ischemia/reperfusion. Lastly, inhibition of NADPH oxidase also markedly reduced cell death in post-ischemic SH-SY5Y cells stimulated by NMDA. CONCLUSIONS: These data indicate that NADPH oxidase has a key role in facilitating NMDAR NR2A tyrosine phosphorylation via SFK activation during post-ischemic reperfusion.  相似文献   

6.
High-altitude (HA) natives have blunted ventilatory responses to hypoxia (HVR), but studies differ as to whether this blunting is lost when HA natives migrate to live at sea level (SL), possibly because HVR has been assessed with different durations of hypoxic exposure (acute vs. sustained). To investigate this, 50 HA natives (>3,500 m, for >20 yr) now resident at SL were compared with 50 SL natives as controls. Isocapnic HVR was assessed by using two protocols: protocol 1, progressive stepwise induction of hypoxia over 5-6 min; and protocol 2, sustained (20-min) hypoxia (end-tidal Po(2) = 50 Torr). Acute HVR was assessed from both protocols, and sustained HVR from protocol 2. For HA natives, acute HVR was 79% [95% confidence interval (CI): 52-106%, P = not significant] of SL controls for protocol 1 and 74% (95% CI: 52-96%, P < 0.05) for protocol 2. By contrast, sustained HVR after 20-min hypoxia was only 30% (95% CI: -7-67%, P < 0.001) of SL control values. The persistent blunting of HVR of HA natives resident at SL is substantially less to acute than to sustained hypoxia, when hypoxic ventilatory depression can develop.  相似文献   

7.
Prolonged exposure to hypoxia is accompanied by decreased hypoxic ventilatory response (HVR), but the relative importance of peripheral and central mechanisms of this hypoxic desensitization remain unclear. To determine whether the hypoxic sensitivity of peripheral chemoreceptors decreases during chronic hypoxia, we measured ventilatory and carotid sinus nerve (CSN) responses to isocapnic hypoxia in five cats exposed to simulated altitude of 5,500 m (barometric pressure 375 Torr) for 3-4 wk. Exposure to 3-4 wk of hypobaric hypoxia produced a decrease in HVR, measured as the shape parameter A in cats both awake (from 53.9 +/- 10.1 to 14.8 +/- 1.8; P less than 0.05) and anesthetized (from 50.2 +/- 8.2 to 8.5 +/- 1.8; P less than 0.05). Sustained hypoxic exposure decreased end-tidal CO2 tension (PETCO2, 33.3 +/- 1.2 to 28.1 +/- 1.3 Torr) during room-air breathing in awake cats. To determine whether hypocapnia contributed to the observed depression in HVR, we also measured eucapnic HVR (PETCO2 33.3 +/- 0.9 Torr) and found that HVR after hypoxic exposure remained lower than preexposed value (A = 17.4 +/- 4.2 vs. 53.9 +/- 10.1 in awake cats; P less than 0.05). A control group (n = 5) was selected for hypoxic ventilatory response matched to the baseline measurements of the experimental group. The decreased HVR after hypoxic exposure was associated with a parallel decrease in the carotid body response to hypoxia (A = 20.6 +/- 4.8) compared with that of control cats (A = 46.9 +/- 6.3; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We examined the effects of the tyrosine kinase (TK) inhibitors, genistein, and tyrphostin (RG-50864) on the contractile action of epidermal growth factor - urogastrone (EGF-URO), transforming growth factor-alpha (TGF-alpha), and other agonists in two smooth muscle bioassay systems (guinea pig gastric longitudinal muscle, LM, and circular muscle, CM). We also studied the inhibition by tyrphostin of EGF-URO stimulated protein phosphorylation in identical smooth muscle strips. The selective inhibition by genistein and tyrphostin of EGF-URO and TGF-alpha induced contraction, but not of carbachol- and bradykinin-mediated contraction, occurred at much lower concentrations (genistein, less than 7.4 microM (2 micrograms/mL); tyrphostin, less than 20 microM (4 micrograms/mL)) than those used in previously published studies with these TK inhibitors. In LM tissue, the IC50 values were for genistein 1.1 +/- 0.1 microM (0.30 micrograms/mL; mean +/- SEM) and 3.6 +/- 0.5 microM (0.74 micrograms/mL) for tyrphostin, yielding a molar potency ratio (GS: TP) of 1:3 in the longitudinal preparation. In CM tissue, the IC50 values were 3.0 +/- 0.3 microM (0.81 micrograms/mL) for genistein and 2.4 +/- 0.2 microM (0.49 micrograms/mL) for tyrphostin, yielding a molar potency ratio (GS:TP) of 1.0:0.8 in the circular strips. The inhibition by genistein and tyrphostin of EGF-URO and TGF-alpha mediated contraction was rapid (beginning within minutes) and was reversible upon washing the preparations free from the enzyme inhibitors. In intact tissue strips studied under bioassay conditions, tyrphostin (40 microM) also blocked EGF-URO triggered phosphorylation of substrates detected on Western blots using monoclonal antiphosphotyrosine antibodies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Protein tyrosine kinase activity, leading to tyrosine phosphorylation of the intracellular domains of receptors or non-receptor proteins, is an important feature of downstream signalling after receptor binding of a variety factors, such as growth factors and cytokines. Since several members of these classes of paracrine-autocrine mediator may be involved in the intraovarian events of ovulation, the present study was designed to evaluate the effect of protein tyrosine kinase inhibition on the in vitro perfused rat ovary. Immature rats were primed with 20 iu pregnant mares' serum gonadotrophin 48 h before surgical isolation of the right ovary with connecting vasculature. The ovary was placed in a perfusion system for either 10 h, to examine ovarian concentrations of the established ovulatory mediators plasminogen activator, prostaglandins E2 and F2 alpha, or for 20 h, enabling a complete ovulatory process to occur in vitro. Ovulation was induced by ovine LH (0.2 microgram ml-1) in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.2 mmol l-1) and the effects of two different protein tyrosine kinase inhibitors, genistein and tyrphostin A25, were studied. Unstimulated control ovaries did not ovulate and showed low secretion of progesterone and oestradiol. Addition of LH + 3-isobutyl-1-methylxanthine resulted in a marked stimulation of steroid release, and ovulations occurred in all ovaries (9.0 +/- 0.9; mean +/- SEM). The protein tyrosine kinase inhibitors, genistein and tyrphostin A25, significantly inhibited ovulation at the higher concentrations tested (3.0 +/- 0.3 at 100 mumol genistein l-1; 5.8 +/- 1.0 at 500 mumol tyrphostin A25 l-1) but no effect was seen at lower concentrations. The presence of genistein and tyrphostin A25 at any concentration used did not significantly decrease the LH + 3-isobutyl-1-methylxanthine-induced progesterone or oestradiol concentrations. The intraovarian concentrations of plasminogen activator activity, and prostaglandin E2 and F2 alpha were not altered by the presence genistein (100 mumol l-1). In conclusion, the results of the present study indicate that protein tyrosine kinase signalling pathways are integral parts of the mammalian ovulatory process but do not involve actions on the synthesis of steroids, plasminogen activator or prostaglandins.  相似文献   

10.
Growth factor receptors activate tyrosine kinases and undergo endocytosis. Recent data suggest that tyrosine kinase inhibition can affect growth factor receptor internalization. The type 1 angiotensin II receptor (AT1R) which is a G-protein-coupled receptor, also activates tyrosine kinases and undergoes endocytosis. Thus, we examined whether tyrosine kinase inhibition affected AT1R internalization. To verify protein tyrosine phosphorylation, both LLCPKCl4 cells expressing rabbit AT1R (LLCPKAT1R) and cultured rat mesangial cells (MSC) were treated with angiotensin II (Ang II) [1-100 nM] then solubilized and immunoprecipitated with antiphosphotyrosine antisera. Immunoblots of these samples demonstrated that Ang II stimulated protein tyrosine phosphorylation in both cell types. Losartan [1 microM], an AT1R antagonist, inhibited Ang II-stimulated protein tyrosine phosphorylation. LLCPKAT1R cells displayed specific 125I-Ang II binding at apical (AP) and basolateral (BL) membranes, and both AP and BL AT1R activated tyrosine phosphorylation. LLCPKAT1R cells, incubated with genistein (Gen) [200 microM] or tyrphostin B-48 (TB-48) [50 microM], were assayed for acid-resistant specific 125I-Ang II binding, a measure of Ang II internalization. Both Gen (n = 7) and TB-48 (n = 3) inhibited AP 125I-Ang II internalization (80+/-7% inhibition; p<0.025 vs. control). Neither compound affected BL internalization. TB-1, a non-tyrosine kinase-inhibiting tyrphostin, did not affect AP 125I-Ang II endocytosis (n = 3), suggesting that the TB-48 effect was specific for tyrosine kinase inhibition. Incubating MSC with Gen (n = 5) or herbimycin A [150 ng/ml] (n = 4) also inhibited MSC 125I-Ang II internalization (82+/-11% inhibition; p<0.005 vs. control). Thus, tyrosine kinase inhibition prevented Ang II internalization in MSC and selectively decreased AP Ang II internalization in LLCPKAT1R cells suggesting that AP AT1R in LLCPKAT1R cells and MSC AT1R have similar endocytic phenotypes, and tyrosine kinase activity may play a role in AT1R internalization.  相似文献   

11.
Vertebrate brains are sensitive to oxygen depletion, which may lead to cell death. Hypoxia sensitivity originates from the high intrinsic rate of ATP consumption of brain tissue, accompanied by the release of glutamate, leading to the opening of ionotropic glutamate receptors, such as N-methyl-D-aspartate (NMDA) receptors (NMDARs). The relative expression levels of the four NMDAR-2 (NR2) subunits change during mammalian development with higher levels of units NR2B and NR2D observed during early development and correlated with hypoxic tolerance during embryonic and neonatal stages of development. Higher levels of NR2D are also abundant in brains of hypoxia tolerant species such as the crucian carp. The subterranean mole-rat, Spalax spends its life underground in sealed burrows and has developed a wide range of adaptations to this special niche including hypoxia-tolerance. In this study, we compared the in vivo mRNA expression of NR2 subunits in the brains of embryonic, neonatal and adult Spalax and rat. Our results demonstrate that under normoxic conditions, mRNA levels of NR2D are higher in Spalax than in rat at all developmental stages studied and are similar to levels in neonatal rat and in other hypoxia/anoxia tolerant species. Furthermore, under hypoxia Spalax NR2D mRNA levels increase while no response was observed in rat. Similarly, hypoxia induces an increase in mRNA levels of Spalax NR2A, claimed to promote neuronal survival. We suggest that indeed the proportional combinations of NMDAR-2 subunits contribute to the ability of the Spalax brain to cope with hypoxic environments.  相似文献   

12.
There is considerable interindividual variation in ventilatory response to hypoxia in humans but the mechanism remains unknown. To examine the potential contribution of variable peripheral chemorecptor function to variation in hypoxic ventilatory response (HVR), we compared the peripheral chemoreceptor and ventilatory response to hypoxia in 51 anesthetized cats. We found large interindividual differences in HVR spanning a sevenfold range. In 23 cats studied on two separate days, ventilatory measurements were correlated (r = 0.54, P less than 0.01), suggesting stable interindividual differences. Measurements during wakefulness and in anesthesia in nine cats showed that although anesthesia lowered the absolute HVR it had no influence on the range or the rank of the magnitude of the response of individuals in the group. We observed a positive correlation between ventilatory and carotid sinus nerve (CSN) responses to hypoxia measured during anesthesia in 51 cats (r = 0.63, P less than 0.001). To assess the translation of peripheral chemoreceptor activity into expiratory minute ventilation (VE) we used an index relating the increase of VE to the increase of CSN activity for a given hypoxic stimulus (delta VE/delta CSN). Comparison of this index for cats with lowest (n = 5, HVR A = 7.0 +/- 0.8) and cats with highest (n = 5, HVR A = 53.2 +/- 4.9) ventilatory responses showed similar efficiency of central translation (0.72 +/- 0.06 and 0.70 +/- 0.08, respectively). These results indicate that interindividual variation in HVR is associated with comparable variation in hypoxic sensitivity of carotid bodies. Thus differences in peripheral chemoreceptor sensitivity may contribute to interindividual variability of HVR.  相似文献   

13.
Tyrosine hydroxylase, a hypoxia-regulated gene, may be involved in tissue adaptation to hypoxia. Intermittent hypoxia, a characteristic feature of sleep apnea, leads to significant memory deficits, as well as to cortex and hippocampal apoptosis that are absent after sustained hypoxia. To examine the hypothesis that sustained and intermittent hypoxia induce different catecholaminergic responses, changes in tyrosine hydroxylase mRNA, protein expression, and activity were compared in various brain regions of male rats exposed for 6 h, 1 day, 3 days, and 7 days to sustained hypoxia (10% O(2)), intermittent hypoxia (alternating room air and 10% O(2)), or normoxia. Tyrosine hydroxylase activity, measured at 7 days, increased in the cortex as follows: sustained > intermittent > normoxia. Furthermore, activity decreased in the brain stem and was unchanged in other brain regions of sustained hypoxia-exposed rats, as well as in all regions from animals exposed to intermittent hypoxia, suggesting stimulus-specific and heterotopic catecholamine regulation. In the cortex, tyrosine hydroxylase mRNA expression was increased, whereas protein expression remained unchanged. In addition, significant differences in the time course of cortical Ser(40) tyrosine hydroxylase phosphorylation were present in the cortex, suggesting that intermittent and sustained hypoxia-induced enzymatic activity differences are related to different phosphorylation patterns. We conclude that long-term hypoxia induces site-specific changes in tyrosine hydroxylase activity and that intermittent hypoxia elicits reduced tyrosine hydroxylase recruitment and phosphorylation compared with sustained hypoxia. Such changes may not only account for differences in enzyme activity but also suggest that, with differential regional brain susceptibility to hypoxia, recruitment of different mechanisms in response to hypoxia will elicit region-specific modulation of catecholamine response.  相似文献   

14.
Fyn-mediated tyrosine phosphorylation of N-methyl-D-aspartate (NMDA) receptor subunits has been implicated in various brain functions, including ethanol tolerance, learning, and seizure susceptibility. In this study, we explored the role of Fyn in haloperidol-induced catalepsy, an animal model of the extrapyramidal side effects of antipsychotics. Haloperidol induced catalepsy and muscle rigidity in the control mice, but these responses were significantly reduced in Fyn-deficient mice. Expression of the striatal dopamine D(2) receptor, the main site of haloperidol action, did not differ between the two genotypes. Fyn activation and enhanced tyrosine phosphorylation of the NMDA receptor NR2B subunit, as measured by Western blotting, were induced after haloperidol injection of the control mice, but both responses were significantly reduced in Fyn-deficient mice. Dopamine D(2) receptor blockade was shown to increase both NR2B phosphorylation and the NMDA-induced calcium responses in control cultured striatal neurons but not in Fyn-deficient neurons. Based on these findings, we proposed a new molecular mechanism underlying haloperidol-induced catalepsy, in which the dopamine D(2) receptor antagonist induces striatal Fyn activation and the subsequent tyrosine phosphorylation of NR2B alters striatal neuronal activity, thereby inducing the behavioral changes that are manifested as a cataleptic response.  相似文献   

15.
The effects of tyrosine protein kinases (TK) on the L-type Ca(2+) current (I(Ca)) were examined in whole cell patch-clamped human atrial myocytes. The TK inhibitors genistein (50 microM), lavendustin A (50 microM), and tyrphostin 23 (50 microM) stimulated I(Ca) by 132 +/- 18% (P < 0.001), 116 +/- 18% (P < 0.05), and 60 +/- 6% (P < 0.001), respectively. After I(Ca) stimulation by genistein, external application of isoproterenol (1 microM) caused an additional increase in I(Ca). Dialyzing the cells with a protein kinase A inhibitor suppressed the effect of isoproterenol on I(Ca) but not that of genistein. Inhibition of protein kinase C (PKC) by pretreatment of cells with 100 nM staurosporine or 100 nM calphostin C prevented the effects of genistein on I(Ca). The PKC activator phorbol 12-myristate 13-acetate (PMA), after an initial stimulation (75 +/- 17%, P < 0.05), decreased I(Ca) (-36 +/- 5%, P < 0.001). Once the inhibitory effect of PMA on I(Ca) had stabilized, genistein strongly stimulated the current (323 +/- 25%, P < 0.05). Pretreating myocytes with genistein reduced the inhibitory effect of PMA on I(Ca). We conclude that, in human atrial myocytes, TK inhibit I(Ca) via a mechanism that involves PKC.  相似文献   

16.
The activity of the N-methyl-D-aspartate (NMDA) receptor, a subclass of ionotropic glutamate receptor, is modulated by a complex network of phosphorylation and dephosphorylation. I investigated the relative extent of tyrosine phosphorylation of NMDA receptor subunit 2A (NR2A) and 2B (NR2B) subunits in the rat forebrain postsynaptic density (PSD) fraction. Immunoblot analysis of immunoprecipitates with antiphosphotyrosine antibodies indicated that tyrosine phosphorylation of NR2A was only 28.6% of that of NR2B. When phosphotyrosine-containing peptides were isolated by affinity-purification or immunoprecipitation, and probed for the two subunits, NR2B was detected but not NR2A. Furthermore, depletion of NR2B removed the phosphotyrosine-containing 180 kDa peptide from the solution while the converse was not true. The small extent of tyrosine phosphorylation of NR2A in the unstimulated condition may explain the dramatic increase in tyrosine phosphorylation in various physiological and pathological conditions.  相似文献   

17.
The N-methyl-D-aspartate receptor (NMDAR) is an ionotropic glutamate receptor, which plays crucial roles in synaptic plasticity and development. We have recently shown that potentiation of NMDA receptor function by protein kinase C (PKC) appears to be mediated via activation of non-receptor tyrosine kinases. The aim of this study was to test whether this effect could be mediated by direct tyrosine phosphorylation of the NR2A or NR2B subunits of the receptor. Following treatment of rat hippocampal CA1 mini-slices with 500 nM phorbol 12-myristate 13-acetate (PMA) for 15 min, samples were homogenized, immunoprecipitated with anti-NR2A or NR2B antibodies and the resulting pellets subjected to Western blotting with antiphosphotyrosine antibody. An increase in tyrosine phosphorylation of both NR2A (76 +/- 11% above control) and NR2B (41 +/- 11%) was observed. This increase was blocked by pretreatment with the selective PKC inhibitor chelerythrine, with the tyrosine kinase inhibitor Lavendustin A or with the Src family tyrosine kinase inhibitor PP2. PMA treatment also produced an increase in the phosphorylation of serine 890 on the NR1 subunit, a known PKC site, at 5 min with phosphorylation returning to near basal levels by 10 min while tyrosine phosphorylation of NR2A and NR2B was sustained for up to 15 min. These results suggest that the modulation of NMDA receptor function seen with PKC activation may be the result of tyrosine phosphorylation of NR2A and/or NR2B.  相似文献   

18.
In the work, the effect of tyrphostin AG1478, a specific inhibitor of the receptor tyrosine kinase, on the behavior of an internalized EGF receptor at different stages upon the stimulation of endocytosis has been analyzed. It was found that tyrphostin added 30 min after the stimulation of endocytosis resulted in recycling of a significant portion of 125I-EGF onto the cell surface. This portion decreased with time. EGF-receptor complexes, which are recycled under the action of AG1478, did not dissociate, possibly due to the ability of tyrphostin AG1478 to initiate receptor oligomerization in the absence of ligand and, therefore, probably affect dissociation constants. It was found that only a portion of the EGF receptor localized in early endosomes was able to recycle upon TK inhibition. The addition of inhibitor 30 and 60 min after the stimulation of endocytosis resulted in a decrease in the labeled EGF degradation. At early stages, internalized EGF-receptor complexes were mostly blocked in early endosomes, while, at late stages, their accumulation occurred in incompletely matured late endosomes. These data indicate that there is the late endocytic stage transition that depends on the receptor TK. Furthermore, the addition of tyrphostin after 90 min of endocytosis did not lead to a decrease, but rather an increase in degradation, which indicates the existence of mechanisms that create a temporal window during which receptor TK can carry out functions that are not directly connected with endocytosis.  相似文献   

19.
The hypoxic exercise test combining a 4,800-m simulated altitude and a cycloergometer exercise at 30% of normoxic maximal aerobic power (MAP) is used to evaluate the individual chemosensitivity to hypoxia in submaximal exercise conditions. This test allows the calculation of three main parameters: the decrease in arterial oxygen saturation induced by hypoxia at exercise (ΔSa(e)) and the ventilatory (HVR(e)) and cardiac (HCR(e)) responses to hypoxia at exercise. The aim of this study was to determine the influence of altitude and exercise intensity on the values of ΔSa(e), HVR(e), and HCR(e). Nine subjects performed hypoxic tests at three simulated altitudes (3,000 m, 4,000 m, and 4,800 m) and three exercise intensities (20%, 30%, and 40% MAP). ΔSa(e) increased with altitude and was higher for 40% MAP than for 20% or 30% (P < 0.05). For a constant heart rate, the loss in power output induced by hypoxia, relative to ΔSa(e), was independent of altitude (4,000-4,800 m) and of exercise intensity. HVR(e) and HCR(e) were independent of altitude (3,000-4,800 m) and exercise intensity (20%-40% MAP). Moreover, the intraindividual variability of responses to hypoxia was lower during moderate exercise than at rest (P < 0.05 to P < 0.001). Therefore, we suggest that HVR(e) and HCR(e) are invariant parameters that can be considered as intrinsic physiological characteristics of chemosensitivity to hypoxia.  相似文献   

20.
Previous studies have shown that Csk plays critical roles in the regulation of neural development, differentiation and glutamate-mediated synaptic plasticity. It has been found that Csk associates with the NR2A and 2B subunits of N-methyl-D-aspartate receptors (NMDARs) in a Src activity-dependent manner and serves as an intrinsic mechanism to provide a “brake” on the induction of long-term synaptic potentiation (LTP) mediated by NMDARs. In contrast to the NR2A and 2B subunits, no apparent tyrosine phosphorylation is found in the NR1 subunit of NMDARs. Here, we report that Csk can also associate with the NR1 subunit in a Src activity-dependent manner. The truncation of the NR1 subunit C-tail which contains only one tyrosine (Y837) significantly reduced the Csk association with the NR1-1a/NR2A receptor complex. Furthermore, we found that either the truncation of NR2A C-tail at aa 857 or the mutation of Y837 in the NR1-1a subunit to phenylalanine blocked the inhibition of NR1-1a/NR2A receptors induced by intracellular application of Csk. Thus, both the NR1 and NR2 subunits are required for the regulation of NMDAR activity by Csk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号