首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classical pancreatic lipase has been purified and partially characterized in many species. The objective of this project was to purify feline classical pancreatic lipase (fPL) from pancreatic tissue and partially characterize this protein. Pancreata were collected from cats (Felis catus) euthanized for unrelated research projects. Fat was removed by trimming away grossly visible fat and by extraction in organic solvents. The delipidated pancreatic extract was further purified by extracting the enzymes in a Tris-buffer containing two different protease inhibitors, benzamidine and phenylmethylsulfonyl fluoride, followed by anion-exchange, size-exclusion, and cation-exchange chromatography. Feline pancreatic lipase was successfully purified from feline pancreatic tissue. The purified product showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis with a molecular mass of approximately 52.5 kDa. Exact molecular mass was determined by mass spectrometry as 52.4 kDa. Approximate specific absorbance at 280 nm of fPL was 1.18 for a 1 mg/ml solution. N-terminal amino acid sequence of the first 25 amino acid residues showed the sequence Lys-Glu-Ile-?-Phe-Pro-Arg-Leu-Gly-?-Phe-Ser-Asp-Asp-Ala-Pro-Trp-Ala-Gly-Ile-Ala-Gln-Arg-Pro-Leu. This sequence showed close homology with the amino acid sequence of classical pancreatic lipase in other species.  相似文献   

2.
A column of immobilized antibodies directed against pure human pancreatic carboxylic (cholesterol) ester hydrolase was used to purify in a single step the enzyme from human pancreatic juice as well as carboxylic-ester hydrolases from other species (rat, dog). This immunoaffinity method was also used for the purification of the related bile-salt-stimulated lipase from the human skim milk. The enzymes were homogeneous on SDS-PAGE. The yields obtained were always higher than those previously observed using either conventional or affinity columns. The human and dog carboxylic-ester hydrolases as well as the bile-salt-stimulated lipase, in contrast to the rat enzyme, are glycoproteins. From our results, it can be speculated that these enzymes, which differ in their molecular weight but not in their N-terminal sequences or amino-acid compositions, might have a similar proteic core with a molecular mass between 65 and 75 kDa. The difference in their respective molecular masses might result from a different level of glycosylation of pancreatic carboxylic-ester hydrolases (and milk bile-salt-stimulated lipase).  相似文献   

3.
Cholesterol ester hydrolase (sterol-ester acylhydrolase, EC 3.1.1.13) was purified from human pancreatic tissue by column chromatography and acetone precipitation, leading to a 400-fold enrichment. Isoelectric focusing of this product reveals a double-band at pH 4.5 and 4.6. The molecular weight was estimated at 320 kDa by means of Sephadex filtration on calibrated columns. Obviously these large molecules represent a tetrameric form of the monomeric subunit (molecular mass 76-80 kDa), which is also enzymatically active. It was found together with the dimeric form in pancreatic juice, where the tetrameric enzyme is responsible for the major part of the hydrolytic activity, splitting cholesterol ester as well as synthetic substrates, such as fluorescein or p-nitrophenyl esters. Attempts to split the tetrameric cholesterol ester hydrolase, isolated from pancreatic tissue, into active subunits found additionally in pancreatic juice by the influence of bile acids and proteolytic enzymes failed. The spectral shift method using Rhodamine fluorescence was employed in order to prove that fluorescein dilaurate forms micellar solutions and mixed micelles when bile salts are present.  相似文献   

4.
1. The maximum activities of the glycolytic enzymes hexokinase (HK) and phosphofructokinase (PFK) were measured in defatted homogenates of adipose tissue from nine homologous depots of 57 wild and captive mammals belonging to 17 species and eight orders and differing in body mass by six orders of magnitude. 2. Site-specific differences in the enzyme activities were similar in all terrestrial species and were not consistently related to adipocyte volume. 3. The specimen-mean maximum activities of HK and PFK did not correlate with body mass, body composition or natural diet. 4. When specimens of different body composition and body mass were compared, glycolytic enzyme activity per adipocyte was directly proportional to adipocyte volume. 5. Site-specific differences in collagen content of adipose tissue did not correspond to those adipocyte volume. When homologous depots of different specimens were compared, the collagen content of adipose tissue was directly proportional to body mass. 6. Adipose tissue of large cetaceans contains more collagen than predicted from the allometric equations fitted to the data from terrestrial mammals. 7. Neither the scaling of the collagen content with body mass nor the site-specific differences in its abundance are consistent with a role as protection or support for adjacent tissues. 8. There are consistent site-specific differences in the extracellular components of adipose tissue as well as in the structure and metabolism of the adipocytes. 9. Adipose tissue differs from most other tissues in that its maximum metabolic capacities do not scale to body mass. 10. Adjustment of the biochemical activity of adipose tissue to changes in body mass and body composition must depend upon neural and endocrine controls, not upon intrinsic differences in its metabolic capabilities.  相似文献   

5.
Extracts of the leaf tissue of Panicum maximum Jacq. var. trichoglume Eyles (a phosphoenolpyruvate carboxykinase type of C4 plant) were examined and at least two isoforms of aspartate aminotransferase (EC 2.6.1.1), with different electrophoretic mobilities, were detected. The predominant isoform was purified to homogeneity from mesophyll cells. The purification procedure included fractionation with ammonium sulfate followed by chromatography on diethylaminoethyl-cellulose, Sephacryl S-300, and hydroxyapatite. The purified enzyme had specific activities of 182 and 165 mumol/min/mg protein, measured in terms of the synthesis of oxaloacetate and aspartate, respectively, at pH 8.0. The enzyme, with an apparent molecular size of 100 kDa, appears to be a dimer of a single polypeptide with a molecular size of 42 kDa. Mono specific polyclonal antibodies were raised against the 42-kDa polypeptide. Only a single stained band was detected in extracts of whole leaves by immunoblot analysis with this antibody after two-dimensional polyacrylamide electrophoresis. Furthermore, no difference in mobility was observed between the enzymes extracted from mesophyll and bundle sheath cells on native polyacrylamide gels. These findings are discussed in relation to the other isoform in the leaves of this species.  相似文献   

6.
Using an antiserum directed against the highly-conserved C-terminal hexapeptide amide of mammalian pancreatic polypeptide (PP), numerous immunoreactive endocrine cells were identified within the pancreas of the European common frog, R. temporaria. An acidified ethanolic extract of pancreatic tissue (0.859 g, n = 35) contained 26.2 nmol equivalents/g of tissue. Gel permeation chromatography of the extract resolved a single peak of immunoreactivity co-eluting with synthetic bovine PP standard. Reverse phase HPLC of this material resolved a single peak of immunoreactivity which was purified to homogeneity following chromatography on a semipreparative C-18 column and an analytical C-8 column. Plasma desorption mass spectrometry (PDMS) of the purified peptide resolved a single component with a molecular mass of 4240.9 Da. Direct gas phase sequencing established the sequence of the first 26 residues. Following incubation of the peptide with endopeptidase Asp-N and direct application of the digest to the sequencer, the entire primary structure of the peptide was established as: APSEPHHPGDQATQDQLAQYYSDLYQYITFVTRPRF. The derived molecular mass of this peptide, incorporating a C-terminal amide, was 4240.6 Da which is entirely consistent with that obtained by PDMS.  相似文献   

7.
Endo-polygalacturonase (PG; EC 3.2.1.15) was recovered from the cell walls of avocado mesocarp ( Persea americana Mill cv. Lula) tissue and purified by sequential ion exchange and gel permeation chromatography. Two isoforms (S-I and S-II) were recovered, exhibiting molecular masses of about 41 kD on size exclusion media and about 48 (S-I) and 46 (S-II) kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Both isoforms exhibited maximum activity at pH 6.0 against polygalacturonic acid (PGA) and hydrolyzed PGA of about 180 kDa to polymers of about 4 kDa. The catalytic activity of the 48-kDa isoform against PGA was slightly higher than that of the 46-kDa isoform. The purified PGs catalyzed significant molecular mass downshifts in the polyuronides of pre-ripe avocados; however, the capacity of the enzymes to solubilize polyuronides from cell walls of pre-ripe fruit was limited.  相似文献   

8.
Glycerophospholipids are the most abundant membrane lipid constituents in most eukaryotic cells. As a consequence, phospholipid class and acyl chain homeostasis are crucial for maintaining optimal physical properties of membranes that in turn are crucial for membrane function. The topic of this review is our current understanding of membrane phospholipid homeostasis in the reference eukaryote Saccharomyces cerevisiae. After introducing the physical parameters of the membrane that are kept in optimal range, the properties of the major membrane phospholipids and their contributions to membrane structure and dynamics are summarized. Phospholipid metabolism and known mechanisms of regulation are discussed, including potential sensors for monitoring membrane physical properties. Special attention is paid to processes that maintain the phospholipid class specific molecular species profiles, and to the interplay between phospholipid class and acyl chain composition when yeast membrane lipid homeostasis is challenged. Based on the reviewed studies, molecular species selectivity of the lipid metabolic enzymes, and mass action in acyl-CoA metabolism are put forward as important intrinsic contributors to membrane lipid homeostasis.  相似文献   

9.
A strategy consisting of a two-phase analytical procedure was used to obtain detailed molecular species composition for glycerophosphocholines (GPCs) profiling in biological tissue using ultra performance liquid chromatography coupled with a triple quadrupole mass spectrometer operating under electrospray mode. In phase one of the analytical procedure, the precursor ion scan was first conducted to obtain the preliminary lipid profile that revealed the composition of the molecular species possessing phosphocholine structure in the biological tissue. In phase two of the analytical procedure, each product ion spectrum obtained for the GPC components in the profile was sequentially acquired for the determination of the molecular structure. A simple guide with high differentiability was proposed for the diacyl-, alkyl-acyl- and alk-1-enyl-acyl-GPC, and related lyso-GPCs molecular structure decision. Total 93 GPCs molecular species were identified in the fetal mouse lung with the relative amounts from 14.39% to less than 0.01% (normalizing by the total GPCs signal). The optimized chromatographic conditions were also proposed in the analytical procedure based on the compromise between the separation efficiency and electrospray signal response. The plate number of the probing GPCs was obviously improved to above 30,000 and the detection limits of the probing GPCs were between 0.002 and 0.016 ng/μL. The practical usability of the analytical procedure has been validated using a study of chemically induced early lung maturation. The metabolic difference between chemically treated and untreated fetal mouse lung was clearly distinguished by the composition of GPCs with several characteristics of molecular structure. The overall results showed that this two-phase analytical procedure was reliable for comprehensive GPC profiling.  相似文献   

10.
Zhang W  Wang XP  Yu ZW  Wang LS  Zhu Y  Yu XF  Wu K  Zeng Y  Xu MY 《IUBMB life》2010,62(10):781-789
Hyperlipidemia is associated with a variety of pancreatic diseases; however, the underlying pathophysiology and molecular mechanisms remain undefined. Here, we performed a comparative proteomic analysis of pancreatic tissue obtained from hyperlipidemic rats to identify proteins that may be involved in mediating hyperlipidemia-associated pancreatic injury. Rats were fed a high-fat diet to induce hyperlipidemia. Control rats were fed a diet with normal fat content. Pancreatic tissue samples were obtained after 6 or 12 weeks and comparative proteomic analysis, using gel electrophoresis and mass spectrometry, was conducted to identify proteins, the expression of which were altered in pancreases from hyperlipidemic compared with control rat pancreases. The expression levels of 3 of 13 proteins were significantly altered in pancreatic samples from hyperlipidemic rats. Alpha-amylase and arginase II were dysregulated by more than twofold. These modulations persisted in pancreatic tissue obtained from late-stage hyperlipidemic rats. The levels of alpha-amylase and arginase II were significantly altered in pancreases obtained from rats with hyperlipidemia. These enzymes may be putative biomarkers of hyperlipidemia-mediated pancreatic injury.  相似文献   

11.
Two Calvin Cycle enzymes, NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a multiprotein complex with CP12, a small intrinsically-unstructured protein. Under oxidizing conditions, association with CP12 confers redox-sensitivity to the otherwise redox-insensitive A isoform of GAPDH (GapA) and provides an additional level of down-regulation to the redox-regulated PRK. To determine if CP12-mediated regulation is specific for GAPDH and PRK in vivo, a high molecular weight complex containing CP12 was isolated from tobacco chloroplasts and leaves and its protein composition was characterized. Gel electrophoresis and immunoblot analyses after separation of stromal proteins by size fractionation verified that the GAPDH (both isoforms) and PRK co-migrated with CP12 in dark- but not light-adapted chloroplasts. Nano-liquid-chromatography-mass-spectrometry of the isolated complex identified only CP12, GAPDH and PRK. Since nearly all of the CP12 from darkened chloroplasts migrates with GADPH and PRK as a high molecular mass species, these data indicate that the tight association of tobacco CP12 with GAPDH and PRK is specific and involves no other Calvin Cycle enzymes.  相似文献   

12.
Digestive enzymes produced by the pancreas and intestinal epithelium cooperate closely during food hydrolysis. Therefore, activities of pancreatic and intestinal enzymes processing the same substrate can be hypothesized to change together in unison, as well as to be adjusted to the concentration of their substrate in the diet. However, our knowledge of ontogenetic and diet-related changes in the digestive enzymes of birds is limited mainly to intestinal enzymes; it is largely unknown whether they are accompanied by changes in activities of enzymes produced by the pancreas. Here, we analyzed age- and diet-related changes in activities of pancreatic enzymes in five passerine and galloanserine species, and compared them with simultaneous changes in activities of intestinal enzymes. Mass-specific activity of pancreatic amylase increased with age in young house sparrows but not in zebra finches, in agreement with changes in typical dietary starch content and activity of intestinal maltase. However, we found little evidence for the presence of adaptive, diet-related modulation of pancreatic enzymes in both passerine and galloanserine species, even though in several cases the same birds adaptively modulated activities of their intestinal enzymes. In general, diet-related changes in mass-specific activities of pancreatic and intestinal enzymes were not correlated. We conclude that activity of pancreatic enzymes in birds is under strong genetic control, which enables evolutionary adjustment to typical diet composition but is less adept for short term, diet-related flexibility.  相似文献   

13.
Activation of cells in the vascular compartment causes profound alteration of cell rheological properties with impairment of the microcirculation and initiation of inflammatory reactions. Many cardiovascular diseases have been shown to be associated with cell activation and inflammation. While this situation offers the opportunity for new interventions against the deleterious effects of cell activation, there is the need for a better understanding of the mechanisms that lead to cell activation in the first place. We review here several mechanisms for cell activation in the circulation. We show that in shock, a condition associated with severe forms of cell activation, humoral cell activation factors can be detected in plasma. Further analysis indicates that the source of these humoral activators may be due to the action of pancreatic digestive enzymes in the intestine. Ischemia may serve to open the intestinal brush border and permit entry of pancreatic enzymes into the wall of the intestine to initiate self digestion. In this process low molecular weight but potent cell activators are produced which may escape via the intestinal circulation and the lymphatics into the general circulation. Inhibition of pancreatic enzymes in the lumen of the intestine leads to complete attenuation of humoral activator production as well as many of the deleterious sequelae that accompany shock, such as inflammation and multi-organ failure. We outline a method to carry out biochemical isolation of the cell activators derived from pancreatic enzymes. This analysis shows that there are multiple species of cell activators above and beyond currently known species, many of which have molecular weights below 3000 Da. Identification of the mechanisms that lead to cell activation is an important part to understand the mechanisms that lead to alterations of rheological properties of blood cells in disease and dysfunction of the endothelium and parenchymal cells. Our current evidence suggests that pancreatic digestive enzymes and tissue enzymes may play a central role in humoral activator production.  相似文献   

14.
A sheep antiserum against purified rabbit-heart adenylate deaminase (EC 3.5.4.6) (AMPD) was developed and validated as an immunologic probe to assess the cross-species tissue distribution of the mammalian cardiac AMPD isoform. The antiserum and the antibodies purified therefrom recognized both native and denatured rabbit-heart AMPD in immunoprecipitation and immunoblot experiments, respectively, and antibody binding did not affect native enzyme activity. The immunoprecipitation experiments further demonstrated a high antiserum titer. Immunoblot analysis of either crude rabbit-heart extracts or purified rabbit-heart AMPD revealed a major immunoreactive band with the molecular mass (81 kDa) of the soluble rabbit-heart AMPD subunit. AMPD in heart extracts from mammalian species other than rabbit (including human) was equally immunoreactive with this antiserum by quantitative immunoblot criteria. Although generally held to be in the same isoform class as heart AMPD, erythrocyte AMPD was not immunoreactive either within or across species. Nor was AMPD from most other tissues [e.g., white (gastrocnemius) muscle, lung, kidney] immunoreactive with the cardiac-directed antibody. Limited immunoreactivity was evidenced by mammalian liver, red (soleus) muscle, and brain extracts across species, indicating the presence of a minor cardiac(-like) AMPD isoform in these tissues. The results of this study characterize the tissue distribution of the cardiac AMPD isoform using a molecular approach with the first polyclonal antibodies prepared against homogeneous cardiac AMPD. This immunologic probe should prove useful at the tissue level for AMPD immunohistochemistry.  相似文献   

15.
A novel chymotrypsin inhibitor, detected in the endosperm of Triticum aestivum, was purified and characterized with respect to the main physical–chemical properties. On the basis of its specificity, this inhibitor was named WCI (wheat chymotrypsin inhibitor). WCI is a monomeric neutral protein made up of 119 residues and molecular mass value of 12,933.40 Da. Automated sequence and mass spectrometry analyses, carried out on several samples of purified inhibitor, evidenced an intrinsic molecular heterogeneity due to the presence of the isoform [des-(Thr)WCI], accounting for about 40% of the total sample. In vitro, WCI acted as a strong inhibitor of bovine pancreatic chymotrypsin as well as of chymotryptic-like activities isolated from the midgut of two phytophagous insects, Helicoverpa armigera (Hüb.) and Tenebrio molitor L., respectively. No inhibitory activities were detected against bacterial subtilisins, bovine pancreatic trypsin, porcine pancreatic elastase or human leukocyte elastase. The primary structure of WCI was significantly similar (45.7–89.1%) to those of several proteins belonging to the cereal trypsin/α-amylase inhibitor super-family and showed the typical sequence motif of this crowed protein group. The cDNA of the inhibitor (wci-cDNA) was isolated from wheat immature caryopses and employed to obtain a recombinant product in E. coli. Experimental evidences indicated that the recombinant inhibitor was localized in the inclusion bodies from which it was recovered as soluble and partially active protein by applying an appropriate refolding procedure. WCI reactive site localization, as well as its inhibitory specificity, was investigated by molecular modeling approach.  相似文献   

16.
cDNA clones corresponding to the entire coding region of mature lipoprotein lipase were identified by antibody screening of a mouse macrophage library and sequenced. The predicted amino acid sequence indicates that the mature protein contains 447 amino acids with a molecular weight of 50,314. Comparison of the nucleotide and amino acid sequence with those of rat hepatic lipase and porcine pancreatic lipase reveals extensive homology among the enzymes, indicating that they are members of a gene family of lipases. Most striking is a conservation of five disulfide bridges in all three enzymes, strongly suggesting that the enzymes have similar overall folding patterns. Lipoprotein lipase is also shown to be extraordinarily conserved among mouse, human, and bovine species. The mRNA for lipoprotein lipase is abundant in heart and adipose tissue but is also present in a wide variety of other tissues. There are two major species of mRNA in mouse and human tissues examined, 3.6 and 3.4 kilobases (kb) in size. Rat tissues, on the other hand, contain only the 3.6-kb species while bovine tissues contain an additional 1.7-kb species.  相似文献   

17.
Cardiolipin is a dimeric phospholipid with a characteristic acyl composition that is generated by fatty acid remodeling after de novo synthesis. Several enzymes have been proposed to participate in acyl remodeling of cardiolipin. In order to compare the effect of these enzymes, we determined the pattern of cardiolipin molecular species in Drosophila strains with specific enzyme deletions, using MALDI-TOF mass spectrometry with internal standards. We established the linear range of the method for cardiolipin quantification, determined the relative signal intensities of several cardiolipin standards, and demonstrated satisfying signal-to-noise ratios in cardiolipin spectra from a single fly. Our data demonstrate changes in the cardiolipin composition during the Drosophila life cycle. Comparison of cardiolipin spectra, using vector algebra, showed that inactivation of tafazzin had a large effect on the molecular composition of cardiolipin, inactivation of calcium-independent phospholipase A(2) had a small effect, whereas inactivation of acyl-CoA:lysocardiolipin-acyltransferase and of the trifunctional enzyme did not affect the cardiolipin composition.  相似文献   

18.
Changes in the isoform composition of the elastic protein titin from skeletal and cardiac muscles of hibernating ground squirrels were revealed for the first time. It was shown that, upon hibernation, the molecular mass of titin decreases and its functional properties change as compared with the active state of the animal. The physiological significance of the changes in titin isoform composition for the inhibition of muscle contractile activity upon hibernation is discussed in connection with similar changes during some cardiomyopathies.  相似文献   

19.
Although smooth muscle caldesmon migrates as a 140- to 150-kDa protein during sodium dodecyl sulfate-gel electrophoresis, its molecular mass is around 93 kDa as determined by sedimentation equilibrium (P. Graceffa, C-L. A. Wang, and W. F. Stafford, 1988, J. Biol. Chem. 263, 14,196-14,202). Nonmuscle caldesmon migrates during electrophoresis with a molecular mass close to 77 kDa, about half that of the muscle isoform. However, it is controversial whether the molecular weight of nonmuscle caldesmon is the same or much less than that of the muscle protein. Therefore we have now determined the molecular mass of rabbit liver caldesmon by sedimentation equilibrium and found a value of 66 +/- 2 kDa, a value much smaller than that of muscle caldesmon. This new value of the molecular weight, together with a sedimentation coefficient of 2.49 +/- 0.02 S. yields an apparent length of 53 +/- 2 nm and a diameter of 1.7 nm for the liver protein. We previously estimated a length of 74 nm and a diameter of 1.7 nm for the muscle caldesmon. We have also determined the amino acid composition of liver caldesmon and found it to be similar to that of the muscle protein. In conclusion, muscle and nonmuscle caldesmons appear to have similar overall amino acid composition and tertiary structure with the smaller nonmuscle protein having a correspondingly smaller length. The difference in molecular weight between the two caldesmons is consistent with the nonmuscle protein lacking a central peptide of the muscle isoform, as suggested by E. H. Ball, and T. Kovala, (1988, Biochemistry 27, 6093-6098).  相似文献   

20.
The existence of a biochemical threshold effect in the metabolic expression of oxidative phosphorylation deficiencies has considerable implications for the understanding of mitochondrial bioenergetics and the study of mitochondrial diseases. However, the molecular bases of this phenomenon remain unclear. We report here a new mechanism to explain this threshold effect, based on a reserve of enzymes not initially participating in the respiratory rate that can be activated either to respond to a flux increase or to compensate for a defect induced by a mutation. We show that this mobilization occurs through 1) the assembly of inactive adenine nucleotide translocator isoform 1 subunits into oligomeric active carriers or 2) conformational changes in the adenine nucleotide translocator isoform 1 in a permeability transition pore-like structure. We discuss how these transitions are sensitive to the steady state of oxidative phosphorylation functioning or tissue and analyze their consequences on the threshold effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号