首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometry method is described for the simultaneous determination of nebivolol and valsartan in human plasma. Nebivolol and valsartan were extracted from plasma using acetonitrile and separated on a C18 column. The mobile phase consisting of a mixture of acetonitrile and 0.05 mM formic acid (50:50 v/v, pH 3.5) was delivered at a flow rate of 0.25 ml/min. Atmospheric pressure ionization (API) source was operated in both positive and negative ion mode for nebivolol and valsartan, respectively. Selected reaction monitoring mode (SRM) using the transitions of m/z 406.1-->m/z 150.9; m/z 434.2-->m/z 179.0 and m/z 409.4-->m/z 228.1 were used to quantify nebivolol, valsartan and internal standard (IS), respectively. The linearity was obtained over the concentration range of 0.01-50.0 ng/ml and 1.0-2000.0 ng/ml and the lower limits of quantitation were 0.01 ng/ml and 1.0 ng/ml for nebivolol and valsartan, respectively. This method was successfully applied to the pharmacokinetic study of fixed dose combination (FDC) of nebivolol and valsartan formulation product after an oral administration to healthy human subjects.  相似文献   

2.
A high-performance liquid chromatographic (HPLC) method for the determination of valsartan in human plasma is reported. The assay is based on protein precipitation with methanol and reversed-phase chromatography with fluorimetric detection. The preparation of a batch of 24 samples takes 20 min. The liquid chromatography was performed on an octadecylsilica column (50 mm x 4 mm, 5 microm particles), the mobile phase consisted of acetonitrile -15 mM dihydrogenpotassium phosphate, pH 2.0 (45:55, v/v). The run time was 2.8 min. The fluorimetric detector was operated at 234/374 nm (excitation/emission wavelength). The limit of quantitation was 98 ng/ml using 0.2 ml of plasma. Within-day and between-day precision expressed by relative standard deviation was less than 5% and inaccuracy did not exceed 8%. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

3.
A simple and highly sensitive high-performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of lansoprazole enantiomers and their metabolites, 5-hydroxylansoprazole enantiomers and lansoprazole sulfone, in human plasma have been developed. Chromatographic separation was achieved with a Chiral CD-Ph column using a mobile phase of 0.5M NaClO(4)-acetonitrile-methanol (6:3:1 (v/v/v)). The analysis required only 100 microl of plasma and involved a solid-phase extraction with Oasis HLB cartridge, with a high extraction recovery (>94.1%) and good selectivity. The lower limit of quantification (LOQ) of this assay was 10 ng/ml for each enantiomer of both lansoprazole and 5-hydroxylansoprazole, and 5 ng/ml for lansoprazole sulfone. The coefficient of variation of inter- and intra-day assay was <8.0% and accuracy was within 8.4% for all analytes (concentration range 10-1000 ng/ml). The linearity of this assay was set between 10 and 1000 ng/ml (r2>0.999 of the regression line) for each of the five analytes. This method is applicable for accurate and simultaneous monitoring of the plasma levels of lansoprazole enantiomers and their metabolites in the renal transplant recipients.  相似文献   

4.
A specific liquid chromatography-mass spectrometric (LC-MS/MS) assay was developed and validated for the determination of lercanidipine, a dihydropyridine calcium channel blocker, in human plasma. Lercanidipine R-D3 was used as internal standard (IS). The drug was extracted from plasma using liquid-liquid extraction technique utilizing hexane: ethyl acetate as extraction solvent. The samples were analyzed using a prepacked Thermo Hypersil C(8) column and a mobile phase composed of a mixture of aqueous acetic acid and triethylamine in methanol. An ion trap mass spectrometer equipped with electrospray ionization (ESI) source operating in the positive ion mode was used to develop and validate the method. The method was proved to be sensitive and specific by testing six different human plasma batches. Linearity was established for the concentration ranges of 0.1-16 ng/ml with a regression factor of 0.9996. The lower limit of quantitation was identifiable and reproducible at 0.1 ng/ml with a precision of 7.2%.  相似文献   

5.
An HPLC method for determining quercetin in human plasma and urine is presented for application to the pharmacokinetic study of rutin. Isocratic reversed-phase HPLC was employed for the quantitative analysis by using kaempferol as an internal standard. Solid-phase extraction was performed on an Oasis HLB cartridge (>95% recovery). The HPLC assay was carried out using a Luna ODS-2 column (150 x 2.1 mm I.D., 5 microm particle size). The mobile phase was acetonitrile-10 mM ammonium acetate solution containing 0.3 mM EDTA-glacial acetic acid, 29:70:1 (v/v, pH 3.9) and 26:73:1 (v/v, pH 3.9) for the determination of plasma and urinary quercetin, respectively. The flow-rate was 0.3 ml/min and the detection wavelength was set at 370 nm. Calibration of the overall analytical procedure gave a linear signal (r>0.999) over a concentration range of 4-700 ng/ml of quercetin in plasma and 20-1000 ng/ml of quercetin in urine. The lower limit of quantification was approximately 7 ng/ml of quercetin in plasma and approximately 35 ng/ml in urine. The detection limit (defined at a signal-to-noise ratio of about 3) was approximately 0.35 ng/ml in plasma and urine. A preliminary experiment to investigate the plasma concentration and urinary excretion of quercetin after oral administration of 200 mg of rutin to a healthy volunteer demonstrated that the present method was suitable for determining quercetin in human plasma and urine.  相似文献   

6.
A highly sensitive method for quantitation of tamsulosin in human plasma using 1-(2,6-dimethyl-3-hydroxylphenoxy)-2-(3,4-methoxyphenylethylamino)-propane hydrochloride as the internal standard (I.S.) was established using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). After alkalization with saturated sodium bicarbonate, plasma were extracted by ethyl acetate and separated by HPLC on a C18 reversed-phase column using a mobile phase of methanol-water-acetic acid-triethylamine (620:380:1.5:1.5, v/v). Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. LC-ESI-MS was performed in the selected ion monitoring (SIM) mode using target ions at m/z 228 for tamsulosin and m/z 222 for the I.S. Calibration curves, which were linear over the range 0.2-30 ng/ml, were analyzed contemporaneously with each batch of samples, along with low (0.5 ng/ml), medium (3 ng/ml) and high (30 ng/ml) quality control samples. The intra- and inter-assay variability ranged from 2.14 to 8.87% for the low, medium and high quality control samples. The extraction recovery of tamsulosin from plasma was in the range of 84.2-94.5%. The method has been used successfully to study tamsulosin pharmacokinetics in adult humans.  相似文献   

7.
A rapid, selective and sensitive high-performance liquid chromatographic method with spectrophotometric detection was developed for the determination of clarithromycin in human plasma. Liquid-liquid extraction of clarithromycin and norverapamil (as internal standard) from plasma samples was performed with n-hexane/1-butanol (98:2, v/v) in alkaline condition followed by back-extraction into diluted acetic acid. Chromatography was carried out using a CN column (250 mm x 4.6 mm, 5 microm) under isocratic elution with acetonitrile-50 mM aqueous sodium dihydrogen phosphate (32:68, v/v), pH 4.5. Detection was made at 205 nm and analyses were run at a flow-rate of 1.0 ml/min at 40 degrees C. The analysis time was less than 11 min. The method was specific and sensitive with a quantification limit of 31.25 ng/ml and a detection limit of 10 ng/ml in plasma. The mean absolute recovery of clarithromycin from plasma was 95.9%, while the intra- and inter-day coefficient of variation and percent error values of the assay method were all less than 9.5%. Linearity was assessed in the range of 31.25-2000 ng/ml in plasma with a correlation coefficient of greater than 0.999. The method was used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

8.
A bioanalytical method for the analysis of artesunate and its metabolite dihydroartemisinin in human plasma using high throughput solid-phase extraction in the 96-wellplate format and liquid chromatography coupled to positive tandem mass spectroscopy has been developed and validated. The method was validated according to published FDA guidelines and showed excellent performance. The within-day and between-day precisions expressed as RSD, were lower than 7% at all tested concentrations including the lower limit of quantification. Using 50 microl plasma the calibration range was 1.19-728 ng/ml with a limit of detection at 0.5 ng/ml for artesunate and 1.96-2500 ng/ml with a limit of detection at 0.6 ng/ml for dihydroartemisinin. Using 250 microl of plasma sample the lower limit of quantification was decreased to 0.119 ng/ml for artesunate and 0.196 ng/ml dihydroartemisinin. Validation of over-curve samples in plasma ensured that accurate estimation would be possible with dilution if samples went outside the calibration range. The method was free from matrix effects as demonstrated both graphically and quantitatively.  相似文献   

9.
A simple and rapid high-performance liquid chromatographic method with fluorescence detection was developed for the determination of loratadine in small volume plasma samples. Liquid-liquid extraction of loratadine and diazepam (as internal standard) from plasma samples was performed with n-butyl alcohol/n-hexane (2:98, v/v) in alkaline condition followed by back-extraction into diluted perchloric acid. Chromatography was carried out using a C8 column (250 x 4.6 mm, 5 microm) under isocratic elution with acetonitrile-20 mM sodium dihydrogen phosphate-triethylamine (43:57:0.02, v/v), pH 2.4. Analyses were run at a flow-rate of 1.0 ml/min at room temperature. The method was specific and sensitive with a quantitation limit of 0.62 ng/ml and a detection limit of 0.2 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery of loratadine from plasma was 84%, while the intra-and inter-day coefficient of variation and percent error values of the assay method were all less than 9.7%. Linearity was assessed in the range of 0.62-20 ng/ml in plasma with a correlation coefficient of greater than 0.999. The method has been used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

10.
A sensitive reversed-phase HPLC method for the analysis of olanzapine in human plasma is described. Isolation of olanzapine from plasma was accomplished by solid-phase extraction utilizing an ion-exchange/reversed-phase cartridge designed for basic drug extraction. The drug was subsequently separated by reversed-phase HPLC and monitored by electrochemical detection (ED). Electrochemical analysis was used to detect olanzapine due to its uniquely low oxidative potential. Ascorbic acid was added to prevent oxidation during extraction. The limit of quantitation for the assay was established at 0.25 ng/ml utilizing a 1-ml human plasma sample. The average inter-day accuracy was 96.6% with a average precision (%C.V.) of 3.22% over the concentration range of 0.25 to 100 ng/ml. This method was applied to human plasma samples from human clinical trials with olanzapine. The HPLC-ED method compared favorably with a negative chemical ionization GC-MS method previously utilized for analysis of olanzapine in human plasma.  相似文献   

11.
A rapid, sensitive and selective liquid chromatography-tandem mass spectrometric (LC/MS/MS) method for the determination of tiropramide in human plasma was developed. Tiropramide and internal standard, cisapride were extracted from human plasma by liquid-liquid extraction and analyzed on a Luna C8 column with the mobile phase of acetonitrile-ammonium formate (10mM, pH 4.5) (50:50, v/v). The analytes was detected using an electrospray ionization tandem mass spectrometry in the multiple-reaction-monitoring mode. The standard curve was linear (r=0.998) over the concentration range of 2.0-200 ng/ml. The intra- and inter-assay coefficients of variation ranged from 2.8 to 7.8 and 6.7 to 8.9%, respectively. The recoveries of tiropramide ranged from 50.2 to 53.1%, with that of cisapride (internal standard) being 60.9+/-5.3%. The lower limit of quantification for tiropramide was 2.0 ng/ml using 100 microl plasma sample. This method was applied to the pharmacokinetic study of tiropramide in human.  相似文献   

12.
The method presented here is a high-performance liquid chromatography (HPLC)-UV detection method for the determination of baclofen R-(-)- and S-(+)-enantiomers in human plasma using a chiral separation technique. Baclofen enantiomers were extracted from human plasma with a reversed-phase solid-phase extraction (SPE) cartridge. The extract was then injected onto a HPLC system with a UV detection system set at 220 nm. The separation was achieved by using a 150x4.6 mm, 5 microm Phenomenex chirex 3216 chiral column with a mobile phase consisting of 0.4 mM CuSO(4) in acetonitrile-20 mM sodium acetate (17:83). The calibration curves were linear for both R-(-)- and S-(+)-enantiomers of baclofen in the concentration range of 20-5000 ng/ml. The average regressions were 0.9980 and 0.9991 for R-(-)- and S-(+)-baclofen, respectively. Inter-day precision was 3.3-5.2% for R-(-)-baclofen and 3.5-3.9% for S-(+)-baclofen at a concentration range of 60-4000 ng/ml. Intra-day precisions were 0.6-4.4 and 0.5-3.5% for R-(-)-baclofen and S-(+)-baclofen, respectively. The average extraction recovery was 81.6% for R-(-)-baclofen, 83.0% for S-(+)-baclofen and 94.0% for the internal standard (p-aminobenzoic acid). The limit of quantitation for both R-(-)- and S-(+)-baclofen in human plasma was 20 ng/ml. The method is simple and easy to operate with accuracy and reproducibility and it is suitable for pharmacokinetic studies.  相似文献   

13.
A sensitive and specific LC/MS/MS method has been developed and validated for determination of ragaglitazar (NNC 61-0029 or DRF 2725) in human plasma. After solid-phase extraction (SPEC((R)) PLUS C(8)) of plasma, separation was performed on a Symmetry Shield RP8 column (mobile phase: acetonitrile: 10 mM ammonium acetate, pH 5.6 (40:60 v/v)). Two ranges were validated having LLOQs of either 0.500 or 100 ng/ml and linearity up to either 500 or 50000 ng/ml. The intra-assay precision and accuracy were 1.1% to 15.7% and 85.8% to 118.2% (range 0.500-500 ng/ml) and 2.0% to 8.8% and 92.9% to 104.8% (range 100-50000 ng/ml). The method was applied for determination of ragaglitazar in plasma from phase 1 and 2 clinical studies.  相似文献   

14.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated for simultaneous quantification of valsartan and hydrochlorothiazide in human plasma. After a simple protein precipitation using acetonitrile, the analytes were separated on a Zorbax SB-Aq C18 column using acetonitrile-10mM ammonium acetate (60:40, v/v, pH 4.5) as mobile phase at a flow rate of 1.2 mL/min. Valsartan and hydrochlorothiazide were eluted at 2.08 min and 1.50 min, respectively, ionized using ESI source, and then detected by multiple reaction monitoring (MRM) mode. The precursor to product ion transitions of m/z 434.2-350.2 and m/z 295.9-268.9 were used to quantify valsartan and hydrochlorothiazide, respectively. The method was linear in the concentration range of 4-3600 ng/mL for valsartan and 1-900 ng/mL for hydrochlorothiazide. The method was successfully employed in a pharmacokinetic study after an oral administration of a dispersible tablet containing 80 mg valsartan and 12.5 mg hydrochlorothiazide to each of the 20 healthy volunteers.  相似文献   

15.
A sensitive and selective HPLC-MS-MS method was developed for the determination of trimebutine maleate (TM) and its major metabolites N-monodemethyltrimebutine (TM-MPB), N-didemethyltrimebutine (APB) and 3,4,5-trimethoxybenzoic acid (TMBA) in human plasma. The analytes were extracted from plasma samples by liquid-liquid extraction and chromatographed on a YMC J'sphere C(18) column. The mobile phase consisted of 2 mM ammonium acetate buffer (pH 6.5)-methanol (20:80, v/v), and at a flow-rate of 0.2 ml/min. Detection was carried out on a triple quadrupole tandem mass spectrometer in multiple reactions monitoring (MRM) mode using positive-negative switching electrospray ionization (ESI). The method was validated over the concentration range of 1-100 ng/ml for trimebutine maleate and APB, 1-500 ng/ml for MPB, and 50-10,000 ng/ml for TMBA. Inter- and intra-day precision (RSD%) for trimebutine maleate and its three metabolites were all within +/-15% and the accuracy was within 85-115%. The limit of quantitation was 1 ng/ml for trimebutine maleate, TM-MPB and APB, and 50 ng/ml for TMBA. The extraction recovery was on average 58.2% for trimebutine maleate, 69.6% for MPB, 51.2% for APB and 62.5% for TMBA. The method was applied to the pharmacokinetic study of trimebutine maleate and its metabolites in healthy Chinese volunteers.  相似文献   

16.
A simple, selective and sensitive high-performance liquid chromatographic method with spectrophotometric detection was developed for the determination of antihyperglycemic agent metformin in human plasma using a novel sample extraction procedure. Liquid-liquid extraction of metformin and ranitidine (as internal standard) from plasma samples was performed with 1-butanol/n-hexane (50:50, v/v) in alkaline condition followed by back-extraction into diluted acetic acid. Chromatography was carried out using a silica column (250 mmx4.6 mm, 5 microm) under isocratic elution with acetonitrile-40 mM aqueous sodium dihydrogen phosphate (25:75, v/v), pH 6. The limit of quantification (LOQ) was 15.6 ng/ml and the calibration curves were linear up to 2000 ng/ml. The mean absolute recoveries for metformin and internal standard using the present extraction procedure were 98 and 95%, respectively. The intra- and inter-day coefficient of variation and percent error values of the assay method were all less than 8.3%.  相似文献   

17.
A high-performance liquid chromatography method with diode array detection (HPLC-DAD) was developed for quantification of aripiprazole and dehydro-aripiprazole, in human plasma. After a simple liquid-liquid extraction, chromatographic separation was carried out on a C18 reversed-phase column, using an ammonium buffer-acetonitrile mobile phase (40:60, v/v). The total run time was only 7 min at a flow-rate of 1.0 ml/min. The precision values were less than 12% and the accuracy values were ranging from 98 to 113% and the lower limit of quantification was 2 ng/ml for both compounds. Calibration curves were linear over a range of 2-1000 ng/ml. The mean trough plasma concentrations in patients treated with aripiprazole were 157 and 29 ng/ml for aripiprazole and dehydro-aripiprazole, respectively.  相似文献   

18.
A poly (methacrylic acid-ethylene glycol dimethacrylate, MAA-EGDMA) monolithic capillary was used for the in-tube solid-phase microextraction (in-tube SPME) of several angiotensin II receptor antagonists (ARA-IIs) from human plasma and urine. Under the optimized extraction condition, the protein component of the biological sample was flushed through the monolithic capillary, while the analytes were successfully trapped. Coupled to HPLC with fluorescence detection, this on-line in-tube SPME method was successfully applied for the determination of candesartan, losartan, irbesartan, valsartan, telmisartan, and their detection limits were found to be 0.1-15.3ng/mL and 0.1-15.2ng/mL in human plasma and urine, respectively. The method was linear over the range of 0.5-200ng/mL for telmisartan, 5-2000ng/mL for candesartan and irbesartan, 10-2000ng/mL for valsartan, and 50-5000ng/mL for losartan with correlation coefficients being above 0.9985 in plasma sample and above 0.9994 in urine sample. The method reproducibility was evaluated at three concentration levels, resulting in the R.S.D. <7%. The poly (MAA-EGDMA) monolithic capillary was demonstrated to be robust and biocompatible by using direct injections of biological samples.  相似文献   

19.
Puerarin, an isoflavone C-glycoside, has been identified as the major active component isolated from Pueraria lobata (Kudzu) responsible for suppression of alcohol drinking. In order to conduct clinical studies of Kudzu's efficacy, a method for measuring its bioavailability and pharmacokinetic profile is needed. We have developed a gradient reversed-phase HPLC system for pharmacokinetic study of puerarin in human plasma. Solid-phase extraction was performed on an abselut Nexus cartridge (60 mg/3 ml) possessing adsorbent function with a recovery of >97% and 4-hydroxybenzoic acid was used as an internal standard. The HPLC assay was performed on a YMC ODS-A column (150 mm x 4.6mm i.d., 5 microm particle size). The HPLC mobile phase consisted of methanol/0.5% acetic acid with 20-35% methanol gradient at a flow-rate of 0.8 ml/min. The UV wavelength was set at 254 nm. Calibration of the overall analytical procedure gave a linear signal (r>0.999) over a puerarin concentration range of 5-500 ng/ml in human plasma. The lower limit of quantification was ca. at 8 ng/ml of puerarin in plasma. The detection limit (defined as signal-to-noise ratio of about 3) was approximately 3 ng/ml. The preliminary pharmacokinetic study after oral administration of the Kudzu capsules containing 400mg of puerarin to a healthy volunteer confirmed that the present method was suitable for determining puerarin in human plasma.  相似文献   

20.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifampin in human plasma. Rifampin and sulindac (internal standard) are extracted from human plasma using a C2 Bond Elut extraction column. A 100-μl volume of 0.1 M HCl is added to the plasma before extraction to increase the retenction of the compounds on the extraction column. Methanol (1 ml) is used to elute the compounds and 0.5 ml of 3 mg/ml ascorbic acid in water is added to the final eluate to reduce the oxidation of rifampin. Separation is achieved by reversed-phase chromatography on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate-acetonitrile (55:45, v/v). Detection is by ultraviolet absorbance at 340 nm. The retention times of rifampin and internal standard are approximately 4.4 and 7.8 min, respectively. The assay is linear in concentration ranges of 50 to 35 000 ng/ml. The quantitation limit is 50 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号