首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Whole cells of Rhodopseudomonas spheroides grown under semi-anaerobic conditions in the light incorporated magnesium into exogenous protoporphyrin when incubated with EDTA or the related chelators EGTA, N-(2-hydroxyethyl)-ethylenediamine-NN'N'- triacetate and trans-1,2-diaminocyclohexanetetra-acetate. 2. The reaction was demonstrated under anaerobic conditions in the light or at low oxygen partial pressure in the dark. Partial pressures of oxygen greater than 15% inhibited the reaction. 3. Cells grown under pure oxygen were completely inactive, but on adaptation to growth under low oxygen partial pressure (O(2)+N(2), 5:95) the development of activity paralleled the synthesis of bacteriochlorophyll. 4. The reaction with normal cells did not require protein synthesis, but cells that had lost their activity by being illuminated in Mg(2+)-deficient medium did not recover it in the absence of protein synthesis. 5. The product of the reaction was magnesium protoporphyrin monomethyl ester. 6. Evidence is presented that insertion of magnesium is obligatorily coupled with methylation and it is concluded that the reaction is dependent on a multienzyme complex.  相似文献   

2.
The quinazolines represent a useful natural product scaffold with demonstrated activities against disorders such as high blood pressure and benign prostatic hyperplasia. Here we report on the synthesis and biological activity of a series of quinazolines that were prepared by a one-pot synthesis of substituted cyclohexadiene enaminonitriles from methyl-ketones. The approach, which employs NaH, complements published procedures where LDA is utilized. While the NaH catalyzed reaction generates the cyclohexadiene enaminonitriles in high yields with heterocyclic substrates, the reaction fails to promote product formation of aliphatic alkyl substrates. On the contrary, the LDA mediated synthesis favors the long chain alkyl substituents while reactions involving the aromatic substrates result in low yields. The final conversion to the quinazolines is also a modification on literature protocols. In cellular assays, the quinazolines showed the most promising activity against Jurkat with CC(50) values in the low micromolar range. Weak activity was observed against microbial strains (Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae). The substituted enaminonitrile intermediates also exhibited weak anti-microbial activity and cytotoxicity against human T-cell leukemia.  相似文献   

3.
We monitored alcoholic fermentation in Saccharomyces cerevisiae as a function of high hydrostatic pressure. Ethanol production from 0.15 M glucose was measured by Raman spectroscopy in situ in a diamond-anvil cell. At 10 MPa, fermentation proceeds three times faster than at ambient pressure and the fermentation yield is enhanced by 5% after 24 h. Above 20 MPa, the reaction kinetics slows down with increasing pressure. The pressure above which no more ethanol is produced is calculated to be 87 ± 7 MPa. These results indicate that the activity of one or several enzymes of the glycolytic pathway is enhanced at low pressure up to 10 MPa. At higher pressures, they become progressively repressed, and they are completely inhibited above 87 MPa. Although fermentation was predicted to stop at ca. 50 MPa, due to the loss of activity of phosphofructokinase, the present study demonstrates that there is still an activity of ca. 30% of that measured at ambient pressure at 65 MPa. This study also validates the use of Raman spectroscopy for monitoring the metabolism of living microorganisms.  相似文献   

4.
Ethylglucoside monooleate was synthesized by esterification between ethylglucoside and oleic acid with immobilized lipase from Candida antarctica in a solvent-free system. It was shown that a stirred tank reactor was suitable for the enzymatic reaction process involving substrates with low miscibility, in which the biocatalyst was recycled five times without significant activity loss. Removal of the co-product, water, from the reaction medium by carrying out the reaction under reduced pressure benefited the esterification reaction and increased the monooleate yield up to 97% within 8 hours.  相似文献   

5.
Ethylglucoside monooleate was synthesized by esterification between ethylglucoside and oleic acid with immobilized lipase from Candida antarctica in a solvent-free system. It was shown that a stirred tank reactor was suitable for the enzymatic reaction process involving substrates with low miscibility, in which the biocatalyst was recycled five times without significant activity loss. Removal of the co-product, water, from the reaction medium by carrying out the reaction under reduced pressure benefited the esterification reaction and increased the monooleate yield up to 97% within 8 hours.  相似文献   

6.
Extracted tomato polygalacturonase was purified by cation-exchange chromatography (and gel filtration) and characterized for molar mass, isoelectric point, as well as optimal pH for polygalacturonase activity. The enzymatic reaction of purified tomato polygalacturonase on polygalacturonic acid as substrate was investigated during a combined high-pressure/temperature treatment in a temperature range of 25 degrees to 80 degrees C and in a pressure range of 0.1 to 500 MPa at pH 4.4 (the pH of tomato-based products). The optimal temperature for initial tomato polygalacturonase activity in the presence of polygalacturonic acid at atmospheric pressure is about 55 degrees to 60 degrees C. The optimal temperature for initial tomato polygalacturonase activity during processing shifted to lower values at elevated pressure as compared with atmospheric pressure, and the catalytic activity of pure tomato polygalacturonase decreased with increasing pressure, which was mostly pronounced at higher temperatures. The elution profiles of the degradation products on high-performance anion-exchange chromatography indicated that for both thermal and high-pressure treatment all oligomers were present in very small amounts in the initial stage of polygalacturonase activity. The amounts of monomer and small oligomers increased with increasing incubation times, whereas the amount of larger oligomers decreased due to further degradation.  相似文献   

7.
Hydrogen is a clean and renewable energy carrier for powering future transportation and other applications. Water electrolysis is a promising option for hydrogen production from renewable resources such as wind and solar energy. To date, tremendous efforts have been devoted to the development of electrocatalysts and membranes for water electrolysis technology. In principle, water electrolysis in acidic media has several advantages over that in alkaline media, including favorable reaction kinetics, easy product separation, and low operating pressure. However, acidic water electrolysis poses higher requirements for the catalysts, especially the ones for the oxygen evolution reaction. It is a grand challenge to develop highly active, durable, and cost‐effective catalysts to replace precious metal catalysts for acidic water oxidation. In this article, an overview is presented of the latest developments in design and synthesis of electrocatalysts for acidic water oxidation, emphasizing new strategies for achieving high electrocatalytic activity while maintaining excellent durability at low cost. In particular, the reaction pathways and intermediates are discussed in detail to gain deeper insight into the oxygen evolution reaction mechanism, which is vital to rational design of more efficient electrocatalysts. Further, the remaining scientific challenges and possible strategies to overcome them are outlined, together with perspectives for future‐generation electrocatalysts that exploit nanoscale materials for water electrolysis.  相似文献   

8.
An original procedure for initial rate accurate determination of enzyme activity under high hydrostatic pressure is reported. This method, adapted to most kinds of enzyme systems, is based on the use of the linear property of product formation during the initial phase of a reaction and does not require specific high pressure equipment. The reliability of the method was tested and illustrated with the study of Aspergillus niger fructosyl-transferase activity as a function of substrate concentration above 300 MPa. © Rapid Science Ltd. 1998  相似文献   

9.
Formate dehydrogenase is an important enzyme for NADH-regeneration in enzyme-catalysed reductions. Methods to determine the activity of this biocatalyst during reaction in aqueous-organic two-phase systems or after immobilisation were therefore investigated. Determination of gaseous CO2 in the headspace of reaction vessels either by gas chromatography or by pressure sensors was found to be a suitable way for deduction of FDH-activity in either of these reaction systems. In the presence of organic solvents, gas chromatography yielded more precise data than pressure sensors, while pressure measurements offer the opportunity to assay continuously the activity of entrapped FDH throughout the whole course of reaction.  相似文献   

10.
The stability and activity of commercial immobilized lipase from Candida antarctica (Novozym 435) in subcritical 1,1,1,2-tetrafluoroethane (R134a) was investigated. The esterification of oleic acid with glycerol was studied as a model reaction in subcritical R134a and in solvent-free conditions. The results indicated that subcritical R134a treatment led to significant increase of activity of Novozym 435, and a maximum residual activity of 300% was measured at 4 MPa, 30 °C after 7 h incubation. No deactivation of Novozym 435 treated with subcritical R134a under different operation factors (pressure 2–8 MPa, temperature 30–60 °C, incubation time 1–12 h, water content 1:1, 1:2, 1:5 enzyme/water, depressurization rate 4 MPa/1 min, 4 MPa/30 min, 4 MPa/90 min) was observed. While the initial reaction rate was high in subcritical R134a, higher conversion was obtained in solvent-free conditions. Though the apparent conversion of the reaction is lower in subcritical R134a, it is more practicable, especially at low enzyme concentrations desired at commercial scales.  相似文献   

11.
The phospholipase D (PLD) from Streptomyces chromofuscus belongs to the superfamily of PLDs. All the enzymes included in this superfamily are able to catalyze both hydrolysis and transphosphatidylation activities. However, S. chromofuscus PLD is calcium dependent and is often described as an enzyme with weak transphosphatidylation activity. S. chromofuscus PLD-catalyzed hydrolysis of phospholipids in aqueous medium leads to the formation of phosphatidic acid. Previous studies have shown that phosphatidic acid-calcium complexes are activators for the hydrolysis activity of this bacterial PLD. In this work, we investigated the influence of diacylglycerols (naturally occurring alcohols) as candidates for the transphosphatidylation reaction. Our results indicate that the transphosphatidylation reaction may occur using diacylglycerols as a substrate and that the phosphatidylalcohol produced can be directly hydrolyzed by PLD. We also focused on the surface pressure dependency of PLD-catalyzed hydrolysis of phospholipids. These experiments provided new information about PLD activity at a water-lipid interface. Our findings showed that classical phospholipid hydrolysis is influenced by surface pressure. In contrast, phosphatidylalcohol hydrolysis was found to be independent of surface pressure. This latter result was thought to be related to headgroup hydrophobicity. This work also highlights the physiological significance of phosphatidylalcohol production for bacterial infection of eukaryotic cells.  相似文献   

12.
Phillips RS  Holtermann G 《Biochemistry》2005,44(43):14289-14297
Escherichia coli tryptophan indole-lyase (Trpase) is a bacterial pyridoxal 5'-phosphate (PLP)-dependent enzyme which catalyzes the reversible beta-elimination of l-Trp to give indole and ammonium pyruvate. H463F mutant E. coli Trpase (H463F Trpase) has very low activity with l-Trp, but it has near wild-type activity with other in vitro substrates, such as S-ethyl-l-cysteine and S-(o-nitrophenyl)-l-cysteine [Phillips, R. S., Johnson, N., and Kamath, A. V. (2002) Formation in vitro of Hybrid Dimers of H463F and Y74F Mutant Escherichia coli Tryptophan Indole-lyase Rescues Activity with l-Tryptophan, Biochemistry 41, 4012-4019]. The interaction of H463F Trpase with l-Trp and l-Met, a competitive inhibitor, has been investigated by rapid-scanning stopped-flow, high-pressure, and pressure jump spectrophotometry. Both l-Trp and l-Met bind to H463F Trpase to form equilibrating mixtures of external aldimine and quinonoid intermediates, absorbing at approximately 420 and approximately 505 nm, respectively. The apparent rate constant for quinonoid intermediate formation exhibits a hyperbolic dependence on l-Trp and l-Met concentration. The rate constant for quinonoid intermediate formation from l-Trp is approximately 10-fold lower for H463F Trpase than for wild-type Trpase, but the rate constant for reaction of l-Met is similar for H463F Trpase and wild-type Trpase. The temperature dependence of the rate constants for quinonoid intermediate formation reveals that both l-Trp and l-Met have similar values of DeltaH(++), but l-Met has a more negative value of DeltaS(++). Hydrostatic pressure perturbs the spectra of the H463F l-Trp and l-Met complexes, by shifting the position of the equilibria between different quinonoid and external aldimine complexes. Pressure-jump experiments show relaxations at 500 nm after rapid pressure changes of 100-400 bar with both l-Trp and l-Met. The apparent rate constants for relaxation of l-Trp, but not l-Met, show a significant increase with pressure. From these data, the value of DeltaV(++) for quinonoid intermediate formation from the external aldimine of l-Trp can be estimated to be -26.5 mL/mol, a larger than expected negative value for a proton transfer. These results suggest that there may be a contribution to the deprotonation reaction either from quantum mechanical tunneling or from a mechanical coupling of protein motion and proton transfer associated with the reaction of l-Trp, but not with l-Met.  相似文献   

13.
For the first time, high-pressure infrared spectroscopy has been used in an enzyme kinetics study. This technique allows not only the investigation of kinetics under very high pressure, but it also allows simultaneous determinion of changes in the secondary structure of enzymes at the corresponding pressures. In the present study, a classical enzyme reaction, the conversion of p-nitrophenol phosphate into p-nitrophenol by alkaline phosphatase was selected to demonstrate the potential of infrared spectroscopy as an alternative physical method in the high-pressure study of enzyme kinetics. The rate constants of this enzyme reaction have been determined as a function of pressure in the pressure range 0.001-14 kbar. The first-order rate constants thus obtained increases with increasing pressure up to 8.3 kbar. At this pressure, the reaction rate decreases abruptly due to the denaturation of the enzyme arising from the conformational changes of some alpha-helical segments in the enzyme molecules into beta-sheet structure. The present results suggest that the pressure-enhanced overall hydrogen-bond strength in the amide groups of the enzyme is one of the factors which stimulate the enzyme activity. Moreover, the dissociation of the dimeric enzyme into its subunits does not inhibit the enzyme activity but only attributes to a slight change in activation volume.  相似文献   

14.
A transient rise of intracranial pressure in cats under chloralose-urethane anaesthesia increased the activity of the sympathetic vertebral nerve, cardiac nerve and in the first phase phrenic nerve. If the vagus nerves were intact this rise in sympathetic activity was associated with bradycardia. These effects developed with a delay, as a rule after abatement of the transient intracranial pressure rise. The authors suggest that Cushing's reaction is caused by medullary ischaemia and development of local metabolic acidosis activating simultaneously the sympathetic and parasympathetic neurons in the medulla oblongata.  相似文献   

15.
The enzymatic transamination reactions between aspartic and α-ketoglutaric acid and between aspartic and pyruvic acid were studied in fresh dialysed extracts of young wheat plants cultivated under various trophical conditions, in mineral solution (Knop), in the solution of an soil organic substance (potassium humate) and without nutrients (H2O). Simultaneously, the level of endogenic aspartic acid, glutamic acid and the growth values were determined. The enzymatic reactions were characterized by determining the optimum pH, the time course, and the effect of coenzyme and of inhibitors. The activity of the aspartate-glutamate transaminase from the root system of plants was considerably higher than the activity of the overground organs. The enzymatic activity from both parts of the plant was inversely proportional to the growth rate: intensive growth of the plants from the Knop variant was connected with their low enzymatic activity; the level of endogenic glutamic acid was high. The slow growth of the plants without nutrients was connected with a higher enzymatic activity; the level of endogenic glutamic acid was low. The plants from the potassium humate variant had an intermediate position between these two variants from the point of view of growth as well as from that of enzymatic activity. The plants with insufficient nutrition (slow growth, low level of endogenic glutamic acid) apparently have a low capacity for supplementing the glutamic acid deficit, which is essential for the metabolic processes, by increasing the activity of the reactions leading to glutamic acid synthesis (Asp-Glu) and, on the other hand, by decreasing the reactions utilizing it (Glu-Ala). For wheat plants the active aspartate-glutamate reaction is obviously physiologically more important than the direct reaction glutamate-aspartate and the reaction aspartate-alanine which in all cases had a very low activity.  相似文献   

16.
Photosystem II-dependent cyclic photophosphorylation activity produced by addition of p-phenylenediamines to KCN-Hg-NH2OH-inhibited chloroplasts is the product of two separate reactions when a proton/electron donor is the catalyst. The activity observed with an electron donor as catalyst consists of a single reaction. One of the cyclic reactions, evoked by low (≤40 micromolar) concentrations of a proton/electron donor is sensitive to dibromothymoquinone and to perturbation of membrane organization by sonication. The second reaction, requiring higher catalyst concentrations, is less sensitive to either dibromothymoquinone or membrane perturbation. These results indicate that at low concentrations, proton/electron or electron donor catalysts act to produce a photosystem II cyclic reaction which is dependent on membrane-bound electron carriers. High concentrations of proton/electron donors, on the other hand, can produce a phosphorylation reaction in which the catalyst itself is largely responsible for cyclic activity.  相似文献   

17.
The effect of pressure on the equilibrium of a reaction was studied. Theoretical equilibrium constants and product concentrations have been calculated at elevated pressures. The theory is illustrated with an example of l-malate synthesis catalyzed by a fumarase. To study shifts in the equilibrium relatively low pressures can be applied (50–200 MPa), but our calculations show that for process optimisation much higher pressures (up to 1000 MPa) have to be used.

At these higher pressures, more stable enzymes are needed. We performed experiments with the hyperthermophilic β-glycosidase from Pyrococcus furiosus as a catalyst. Oligosaccharides were synthesized from glucose in an equilibrium reaction at pressures from 0.1 to 500 MPa. The enzyme remained active at 500 MPa. The equilibrium of the reaction was influenced by pressure and shifted towards the hydrolysis side, decreasing final oligosaccharide concentrations with increasing pressure. This pressure dependence of the final product concentration and the equilibrium constant could be described with a positive reaction volume of 2.4 mol/cm3.  相似文献   


18.
I Ueda  F Shinoda    H Kamaya 《Biophysical journal》1994,66(6):2107-2110
This study measured the effect of high pressure on the enzyme kinetics of firefly luciferase. When firefly luciferase is mixed with luciferin and ATP, a transient flash of light is produced, followed by a weak light, lasting hours. The first stage reaction produces an enzyme-luciferin-AMP complex and pyrophosphate. Addition of pyrophosphate to the reaction mixture decelerated the reaction rate, and the initial flash was prolonged to a plateau, showing a quasi-equilibrium state. The effects of temperature and pressure were analyzed at the plateau. The temperature scan showed that the maximum light intensity was observed at about 22.5 degrees C. When pressurized below the temperature optimum, pressure decreased the light intensity, while increasing it above the temperature optimum. According to the theory of absolute reaction rate, the following values were obtained for the bioluminescent reaction: delta V++ = 823.7 - 2.8 T cm3/mol and delta V = -280.47 + 0.94T cm3/mol, where T is the absolute temperature, delta V++ and delta V are, respectively, activation volume and the volume change due to thermal unfolding. The optimal temperature for the maximum light output occurs because the reaction rate increases with the temperature elevation at low temperature range, but the thermal unfolding of the enzyme decelerates the reaction velocity when the temperature exceeds a critical value. The intensity of luminescence is modified by the influence of pressure on both delta V++ and delta V. So long as the volume of the activated complex (V++) exceeds the average volume of the nonactivated complex (VN), pressure will slow down the reaction. At the point where the volumes become equal, there is no change in the rate under pressure. When the volume of the activated complex is less than that of the reactants, pressure will speed up the rate. This study showed that firefly luciferase is not exceptional to other enzymes in responding to high pressure.  相似文献   

19.
A histochemical analysis of reaction rates of a series of enzymes was performed in electromotor neurons of the weakly electric fish Apteronotus leptorhynchus. These neurons were selected because of their functional homogeneity. The high metabolic activity of these cells as well as their large size facilitate cytophotometric analysis in cryostat sections. Sections were incubated for the activity of hexokinase, glucose-6-phosphate dehydrogenase, succinate dehydrogenase, NADPH dehydrogenase, NADPH ferrihaemoprotein reductase and beta-hydroxybutyrate dehydrogenase. All media contained polyvinyl alcohol as tissue stabilizer and Nitro BT as final electron acceptor. Measurements were performed with a Vickers M85a cytophotometer. Linear relationships between the specific formation of formazan (test minus control reaction) and incubation time were obtained for all enzymes although some reactions showed an initial lag phase or an intercept with the ordinate. The relatively high activities of hexokinase, succinate dehydrogenase and the extremely low activity of hydroxybutyrate dehydrogenase indicate that energy is mainly supplied by glycolysis. Glucose-6-phosphate dehydrogenase showed a high activity whereas NADPH reductase and dehydrogenase activity were low in electromotor neurons, indicating that the NADPH generated is largely used for biosynthesis. Despite their synchronous firing pattern activity, electromotor neurons showed a considerable heterogeneity with respect to their metabolic activity.  相似文献   

20.
A rapid and sensitive assay for kynurenine 3-hydroxylase (KH) has been developed. This radiometric assay is based on the enzymatic synthesis of tritiated water from L-[3,5-3H]kynurenine during the hydroxylation reaction. Radiolabeled water is quantified following selective adsorption of the isotopic substrate and its metabolite with activated charcoal. The assay is suitable for detecting 0.1 pmol enzyme activity per minute per milligram protein in tissues displaying low levels of the enzyme. The amount of water produced in the reaction, as calculated from the tritium released, was stoichiometric with the 3-hydroxykynurenine product detected by HPLC. Rat liver KH was characterized by cofactor specificity and kinetic parameters. NADPH was preferred over NADH as coreductant in the reaction. Tetrahydrobiopterin was not a cofactor. The tissue distribution of KH activity in the rat suggested that the majority of active enzyme is located in liver and kidney. Detectable amounts were found in several other tissues, including brain which had low but significant levels of activity in every region assayed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号