首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of implant stability in bone tissue remains difficult to assess because remodeling phenomena at the bone-implant interface are still poorly understood. The characterization of the biomechanical properties of newly formed bone tissue in the vicinity of implants at the microscopic scale is of importance in order to better understand the osseointegration process. The objective of this study is to investigate the potentiality of micro-Brillouin scattering techniques to differentiate mature and newly formed bone elastic properties following a multimodality approach using histological analysis. Coin-shaped Ti-6Al-4V implants were placed in vivo at a distance of 200?μm from rabbit tibia leveled cortical bone surface, leading to an initially empty cavity of 200?μm×4.4?mm. After 7 weeks of implantation, the bone samples were removed, fixed, dehydrated, embedded in methyl methacrylate, and sliced into 190?μm thick sections. Ultrasonic velocity measurements were performed using a micro-Brillouin scattering device within regions of interest (ROIs) of 10?μm diameter. The ROIs were located in newly formed bone tissue (within the 200?μm gap) and in mature bone tissue (in the cortical layer of the bone sample). The same section was then stained for histological analysis of the mineral content of the bone sample. The mean values of the ultrasonic velocities were equal to 4.97×10(-3)?m/s in newly formed bone tissue and 5.31×10(-3)?m/s in mature bone. Analysis of variance (p=2.42×10(-4)) tests revealed significant differences between the two groups of measurements. The standard deviation of the velocities was significantly higher in newly formed bone than in mature bone. Histological observations allow to confirm the accurate locations of the velocity measurements and showed a lower degree of mineralization in newly formed bone than in the mature cortical bone. The higher ultrasonic velocity measured in newly formed bone tissue compared with mature bone might be explained by the higher mineral content in mature bone, which was confirmed by histology. The heterogeneity of biomechanical properties of newly formed bone at the micrometer scale may explain the higher standard deviation of velocity measurements in newly formed bone compared with mature bone. The results demonstrate the feasibility of micro-Brillouin scattering technique to investigate the elastic properties of newly formed bone tissue.  相似文献   

2.
During hominin plantigrade locomotion, the weight-bearing function of the fibula has been considered negligible. Nevertheless, studies conducted on human samples have demonstrated that, even if less than that of the tibia, the load-bearing function of the fibula still represents a considerable portion of the entire load borne by the leg. The present study assesses whether variation in habitual lower limb loading influences fibular morphology in a predictable manner. To achieve this, both fibular and tibial morphology were compared amongst modern human athletes (field hockey players and cross-country runners) and matched sedentary controls. Peripheral quantitative computed tomography was used to capture two-dimensional, cross-sectional bone images. Geometric properties were measured at the midshaft for each bone. Results show a trend of increased fibular rigidity from control to runners through to field hockey players. Moreover, relative fibular robusticity (fibula/tibia) is significantly greater in hockey players compared with runners. These results are likely the consequence of habitual loading patterns performed by these athletes. Specifically, the repeated directional changes associated with field hockey increase the mediolateral loading on the lower leg in a manner that would not necessarily be expected during cross-country running. The present study validates the use of the fibula in association with the tibia as a mean to provide a more complete picture of leg bone functional adaptations. Therefore, the fibula can be added to the list of bones generally used (tibia and femur) to assess the correspondence between mobility patterns and skeletal morphology for past human populations.  相似文献   

3.
Elevation of creatine kinase (CK) in serum after exertion is a reliable marker of skeletal muscle injury. Limited data exist on CK levels in conditioned athletes after endurance training and competition. Serum CK was measured by a kinetic UV method (normal < 100 U/L) in 15 long distance runners before (pre-race), 24 hours after (post-race) and four weeks following (post-race) the 1979 Boston Marathon. CK levels were elevated throughout the study. Mean values for all runners and for those finishing before and after three hours and 30 minutes are as follows: Post-race CK was significantly elevated among the ten faster as compared to the five slower runners (p = 0.025). Elevations of creatine kinase drawn 24 hours post-marathon are inversely related to finishing times among the runners tested.  相似文献   

4.
Ultrasonic determination of elastic properties in human craniofacial cortical bone is problematic because of a lack of information about the principal material axes, and because the cortex is often thinner than in long bones. This study investigated solutions that permit reasonable determination of elastic properties in the human mandible. We tested whether ultrasonic velocities could be reliably measured in cylindrical samples of aluminum and mandibular bone, and the effects of reduced specimen thickness. Results indicted that (1) varying shape had minimal effects on ultrasonic velocities or derived elastic properties, and (2) ultrasonic velocities have relatively increased measurement error as propagation distances decreased. The increased error in velocity measurements of mandibular cortical specimens of less than 1.2 mm in thickness should be considered when assessing the reliability of single measurements.  相似文献   

5.
The acute effects of running a 42.2 km marathon race on the concentration and composition of the plasma lipoproteins were studied in 56 men of varying fitness, training experience, age and physical characteristics. There was no change in the mean concentration of total serum cholesterol, but a 10.9% increase (P less than 0.001) in the mean concentrations of high-density lipoprotein cholesterol (HDL-TC), representing an 11.1% increase (P less than 0.001) in the cholesteryl ester (CE) and 9.9% increase (P less than 0.001) in the unesterified cholesterol (UC) moieties of HDL. The ratio of total serum cholesterol to HDL-TC decreased significantly (P less than 0.001) during the exercise. Changes in lipoprotein concentrations during the marathon varied considerably between individual subjects, with a small proportion of subjects exhibiting relatively large increases or decreases in HDL-TC, HDL-CE and HDL-UC. Small sub-populations of runners were identified who showed abnormally large decreases in HDL-UC and abnormally small increases in HDL-CE relative to HDL-UC. A correlation (P less than 0.05) was found between the average weekly mileage of training and the increase in HDL-TC, whilst faster runners (finishing time less than 3 h; n = 13) had a significantly greater (P less than 0.02) increase in HDL-TC than slower runners (greater than 4 h; n = 14).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To see whether strenuous prolonged exertion increases blood platelet activation and thrombin activity in healthy well-trained men, 16 male amateur runners (mean age 31,8) were studied. A marathon race (mean time 2 h 44 min 30 s) caused a significant increase in plasma beta-thromboglobulin (beta-TG), platelet factor 4 (PF4), fibrinopetide A (FPA) and factor VIII (F VIII) activity. Sixty min after exertion beta-TG and F VIII activity were still significantly elevated. FPA continued to rise, reaching peak values 60 min after the run. 22 h after finishing the race F VIII activity was still significantly elevated. The study has demonstrated the great inter-individual variability of marathon race-induced haemostatic changes. The elevation of beta-TG varied from 42% to 156%, F VIII from 112% to 625%, and in three runners FPA reached more than 900% of its pre-exercise value. In some individuals the haemostatic changes observed could be potentially unfavourable for coronary heart disease prevention.  相似文献   

7.
Narrow step width has been linked to variables associated with tibial stress fracture. The purpose of this study was to evaluate the effect of step width on bone stresses using a standardized model of the tibia. 15 runners ran at their preferred 5 k running velocity in three running conditions, preferred step width (PSW) and PSW±5% of leg length. 10 successful trials of force and 3-D motion data were collected. A combination of inverse dynamics, musculoskeletal modeling and beam theory was used to estimate stresses applied to the tibia using subject-specific anthropometrics and motion data. The tibia was modeled as a hollow ellipse. Multivariate analysis revealed that tibial stresses at the distal 1/3 of the tibia differed with step width manipulation (p=0.002). Compression on the posterior and medial aspect of the tibia was inversely related to step width such that as step width increased, compression on the surface of tibia decreased (linear trend p=0.036 and 0.003). Similarly, tension on the anterior surface of the tibia decreased as step width increased (linear trend p=0.029). Widening step width linearly reduced shear stress at all 4 sites (p<0.001 for all). The data from this study suggests that stresses experienced by the tibia during running were influenced by step width when using a standardized model of the tibia. Wider step widths were generally associated with reduced loading of the tibia and may benefit runners at risk of or experiencing stress injury at the tibia, especially if they present with a crossover running style.  相似文献   

8.
The movement of the knee joint consists of a coupled motion between the tibiofemoral and patellofemoral articulations. This study measured the six degrees-of-freedom kinematics of the tibia, femur, and patella using dual-orthogonal fluoroscopy and magnetic resonance imaging. Ten normal knees from ten living subjects were investigated during weightbearing flexion from full extension to maximum flexion. The femoral and the patellar motions were measured relative to the tibia. The femur externally rotated by 12.9 deg and the patella tilted laterally by 16.3 deg during the full range of knee flexion. Knee flexion was strongly correlated with patellar flexion (R(2)=0.91), posterior femoral translation was strongly correlated to the posterior patellar translation (R(2)=0.87), and internal-external rotation of the femur was correlated to patellar tilt (R(2)=0.73) and medial-lateral patellar translation (R(2)=0.63). These data quantitatively indicate a kinematic coupling between the tibia, femur, and patella, and provide base line information on normal knee joint kinematics throughout the full range of weightbearing flexion. The data also suggest that the kinematic coupling of tibia, femur, and patella should be considered when investigating patellar pathologies and when developing surgical techniques to treat knee joint diseases.  相似文献   

9.
The purpose of this study was to investigate the force-velocity response of the neuromuscular system to a variety of concentric only, stretch-shorten cycle, and ballistic bench press movements. Twenty-seven men of an athletic background (21.9 +/- 3.1 years, 89.0 +/- 12.5 kg, 86.3 +/- 13.6 kg 1 repetition maximum [1RM]) performed 4 types of bench presses, concentric only, concentric throw, rebound, and rebound throw, across loads of 30-80% 1RM. Average force output was unaffected by the technique used across all loads. Greater force output was recorded using higher loading intensities. The use of rebound was found to produce greater average velocities (12.3% higher mean across loads) and peak forces (14.1% higher mean across loads). Throw or ballistic training generated greater velocities across all loads (4.4% higher average velocity and 6.7% higher peak velocity), and acceleration-deceleration profiles provided greater movement pattern specificity. However, the movement velocities (0.69-1.68 m.s(-1)) associated with the loads used in this study did not approach actual movement velocities associated with functional performance. Suggestions were made as to how these findings may be applied to improve strength, power, and functional performance.  相似文献   

10.
The purpose of this randomized study was to measure the influence of vitamin C (n = 15 runners) compared with placebo (n = 13 runners) supplementation on oxidative and immune changes in runners competing in an ultramarathon race. During the 7-day period before the race and on race day, subjects ingested in randomized, double-blind fashion 1,500 mg/day vitamin C or placebo. On race day, blood samples were collected 1 h before race, after 32 km of running, and then again immediately after race. Subjects in both groups maintained an intensity of approximately 75% maximal heart rate throughout the ultramarathon race and ran a mean of 69 km (range: 48-80 km) in 9.8 h (range: 5-12 h). Plasma ascorbic acid was markedly higher in the vitamin C compared with placebo group prerace and rose more strongly in the vitamin C group during the race (postrace: 3.21 +/- 0.29 and 1.28 +/- 0.12 microg/100 microl, respectively, P < 0.001). No significant group or interaction effects were measured for lipid hydroperoxide, F2-isoprostane, immune cell counts, plasma interleukin (IL)-6, IL-10, IL-1-receptor antagonist, or IL-8 concentrations, or mitogen-stimulated lymphocyte proliferation and IL-2 and IFN-gamma production. These data indicate that vitamin C supplementation in carbohydrate-fed runners does not serve as a countermeasure to oxidative and immune changes during or after a competitive ultramarathon race.  相似文献   

11.
Bone fatigue fracture is a progressive disease due to stress concentration. This study aims to evaluate the long bone fatigue damage using the ultrasonic guided waves. Two-dimensional finite-difference time-domain method was employed to simulate the ultrasonic guided wave propagation in the long bone under different elastic modulus. The experiment was conducted on a 3.8 mm-thick bovine bone plate. The phase velocities of two fundamental guided modes, A1 and S1, were measured by using the axial transmission technique. Simulation shows that the phase velocities of guided modes A1 and S1 decrease with the increasing of the fatigue damage. After 20,000 cycles of fatigue loading on the bone plate, the average phase velocities of A1 and S1 modes were 6.6% and 5.3% respectively, lower than those of the intact bone. The study suggests that ultrasonic guided waves can be potentially used to evaluate the fatigue damage in long bones.  相似文献   

12.
Biot's theory and the modified Biot-Attenborough (MBA) model are applied to predict the dependences of acoustic characteristics on frequency and on porosity in cancellous bone. The phase velocities and the attenuation coefficients predicted by both theories are compared with the experimental data of bovine cancellous bone specimens published in the literature. Biot's theory successfully predicts the dependences of the phase velocity on frequency and on porosity in cancellous bone, whereas a significant discrepancy is observed between the predicted and the measured attenuation coefficients. The MBA model agrees well with the frequency and the porosity dependences of the phase velocity and the attenuation coefficient experimentally measured in bovine bones. Although the MBA model relies on phenomenological parameters derived from the experimental data, its approach to cancellous bone can be usefully employed in the field of clinical ultrasonic bone assessment.  相似文献   

13.
Improper activation of the quadriceps muscles vastus medialis (VM) and vastus lateralis (VL) has been implicated in the development of patellofemoral pain (PFP). This explanation of PFP assumes that VM and VL produce opposing mediolateral forces on the patella. Although studies have provided evidence for opposing actions of VM and VL on the patella, other studies have suggested that their actions might be similar. In this study, we took advantage of the experimental accessibility of the rat to directly measure the forces on the patella produced by VM and VL. We found that VM and VL produce opposing mediolateral forces on the patella when the patella was lifted away from the femur. These distinct mediolateral forces were not transmitted to the tibia, however: forces measured at the distal tibia were very similar for VM and VL. Further, when the patella was placed within the trochlear groove, the forces on the patella produced by VM and VL were very similar to one another. These results suggest that mediolateral forces produced by VM and VL are balanced by reaction forces from the trochlear groove and so are not transmitted to the tibia. These results provide a rich characterization of the mechanical actions of VM and VL and have implications about the potential role of these muscles in PFP and their neural control during behavior.  相似文献   

14.
We measured turbulence velocity in the canine ascending aorta using a hot-film anemometer. Blood flow velocity was measured at various points across the ascending aorta approximately 1.5-2 times the diameter downstream from the aortic valve. The turbulence spectrum was calculated and its characteristics were examined in connection with the mean Reynolds number and/or measuring positions. In the higher wave number range the values of the turbulence spectra were higher at larger mean Reynolds number. In the higher wave number range, the values of the turbulence spectra were higher at points closer to the centerline of the aorta, when the mean Reynolds number was relatively large. The patterns of the turbulence spectra at various points outside the boundary layer on the aortic wall were similar.  相似文献   

15.

Introduction  

Oestrogen depletion may influence onset and/or progression of osteoarthritis. We investigated in an ovariectomized mouse model the impact of oestrogen loss and oestrogen supplementation on articular cartilage and subchondral bone in tibia and patella, and assessed bone changes in osteoarthritis development.  相似文献   

16.
A method is proposed to measure the phase velocities of the first mode of flexural waves in the human tibia. Keeping in mind the dispersive nature of flexural waves in beam-like bodies, a two point measurement method was developed which enables the calculation of the phase difference of the propagating wave between two observation points for a selected frequency range. The method for dispersion analysis was tested with synthetic and observed signals for a cylinder. This was done by comparison of observed radial acceleration on the surface of a PVC-cylinder with computed synthetic signals consisting only of first mode flexural waves. An in vivo study was performed with 43 subjects. The phase velocity measurements in human tibia show a good correlation with the bone mineral content estimated by means of the Cameron-Sorenson technique (Cameron and Sorenson, 1963). The bone mineral loss is reflected by decreasing phase velocities. This indicates that phase velocity measurements of flexural waves can be used for an estimation of bone mineral content in vivo.  相似文献   

17.
Maximal isokinetic knee extensor strength was measured as torque in 17 young (mean age +/- SD, 21 +/- 3 years) and 16 elderly (68 +/- 5 years) women at 30 degrees (0.52 rad) before full extension, at angular velocities from 0 to 5.24 rad s-1, in 7 increments of 0.87 rad s-1. The elderly women were significantly weaker than the young women at all angular velocities. The rate of loss of absolute torque with increasing velocity was similar for both age groups, but when torque was standardised as a percentage of the individual's maximum, the elderly group showed a significantly greater rate of loss than the younger group. Quick-release from an isometric effort did not increase the recorded torques at 4.36 rad s-1 compared with the free-running method in either age group. The age differences are compatible with lower ratio of type II to type I fibre are in the older group.  相似文献   

18.
Measurement of cortisol and testosterone in saliva samples provided by marathon runners at 6.4 km (4-mile) intervals has been used for monitoring acute changes in adrenal and testicular activity, and the changes compared with mean values in timed samples on five rest days. The collection of mixed whole saliva was well accepted; the missed sample rate in the 8 runners in the Cardiff marathon was less than 10%. On rest days, salivary cortisol and testosterone were within the normal male range and showed a circadian rhythm; mean values at 08.00 h (23.5 nmol L-1; 258 pmol L-1, p less than 0.001, p less than 0.001 respectively) were higher than at 22.00 h (2.8 nmol L-1; 130 pmol L-1). In samples collected at 09.00 h, immediately prior to the Cardiff marathon, cortisol (25.1 nmol L-1) and testosterone (304 pmol L-1) were higher than the mean values (14.9 nmol L-1; 209 pmol L-1) on non-run days. Concentrations of both steroids increased during the marathon; testosterone peaked (442 pmol L-1) at 21 miles, whereas cortisol continued to increase, being maximal (87.9 nmol L-1) at 30 min after completion of the run. Four of the runners in the Cardiff marathon also participated in the Bristol marathon and the changing patterns in salivary hormones were strictly comparable. Salivary sampling would appear to be of value in monitoring acute and rhythmic changes in endocrine function in marathon runners. The temporal relationship between changes in salivary cortisol and testosterone are consistent with direct inhibition of testicular secretion by high cortisol concentrations.  相似文献   

19.
The nature and kinetics of postexercise cardiac troponin (cTn) appearance is poorly described and understood in most athlete populations. We compared the kinetics of high-sensitivity cTn T (hs-cTnT) after endurance running in training-matched adolescents and adults. Thirteen male adolescent (mean age: 14.1 ± 1.1 yr) and 13 male adult (24.0 ± 3.6 yr) runners performed a 90-min constant-load treadmill run at 95% of ventilatory threshold. Serum hs-cTnT levels were assessed preexercise, immediately postexercise, and at 1, 2, 3, 4, 5, 6, and 24 h postexercise. Serum NH(2)-terminal pro-brain natriuretic peptide (NT-pro-BNP) levels were recorded preexercise and 3, 6, and 24 h postexercise. Left ventricular function was assessed preexercise, immediately postexercise, and 6 h postexercise. Peak hs-cTnT occurred at 3-4 h postexercise in all subjects, but was substantially higher (P < 0.05) in adolescents [median (range): 211.0 (11.2-794.5) ng/l] compared with adults [median (range): 19.1 (9.7-305.6) ng/l]. Peak hs-cTnT was followed by a rapid decrease in both groups, although adolescent data had not returned to baseline at 24 h. Substantial interindividual variability was noted in peak hs-cTnT, especially in the adolescents. NT-pro-BNP was significantly elevated postexercise in both adults and adolescents and remained above baseline at 24 h in both groups. In both groups, left ventricular ejection fraction and the ratio of early-to-atrial peak Doppler flow velocities were significantly decreased immediately postexercise. Peak hs-cTnT was not related to changes in ejection fraction, ratio of early-to-atrial peak Doppler flow velocities, or NT-pro-BNP. The present data suggest that postexercise hs-cTnT elevation 1) occurred in all runners, 2) peaked 3-4 h postexercise, and 3) the peak hs-cTnT concentration after prolonged exercise was higher in adolescents than adults.  相似文献   

20.
Bone loss from the paralysed limbs after spinal cord injury (SCI) is well documented. Under physiological conditions, bones are adapted to forces which mainly emerge from muscle pull. After spinal cord injury (SCI), muscles can no longer contract voluntarily and are merely activated during spasms. Based on the Ashworth scale, previous research has suggested that these spasms may mitigate bone losses. We therefore wished to assess muscle forces after SCI with a more direct measure and compare it to measures of bone strength. We hypothesized that the bones in SCI patients would be in relation to the loss of muscle forces. Six male patients with SCI 6.4 (SD 4.3) years earlier and 6 age-matched, able-bodied control subjects were investigated. Bone scans from the right knee were obtained by pQCT. The knee extensor muscles were electrically stimulated via the femoral nerve, isometric knee extension torque was measured and patellar tendon force was estimated. Tendon force upon electrical stimulation in the SCI group was 75% lower than in the control subjects (p<0.01). Volumetric bone mineral density of the patella and of the proximal tibia epiphysis were 50% lower in the SCI group than in the control subjects (p<0.01). Cortical area was lower by 43% in the SCI patients at the proximal tibia metaphysis, and by 33% at the distal femur metaphysis. No group differences were found in volumetric cortical density. Close curvilinear relationships were found between stress and volumetric density for the tibia epiphysis (r(2)=0.90) and for the patella (r(2)=0.91). A weaker correlation with the tendon force was found for the cortical area of the proximal tibia metaphysis (r(2)=0.63), and none for the distal femur metaphysis. These data suggest that, under steady state conditions after SCI, epiphyseal bones are well adapted to the muscular forces. For the metaphysis of the long bones, such an adaptation appears to be less evident. The reason for this remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号