首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The leucine-rich repeat domain of Internalin B is composed of seven tandem leucine-rich repeats, which each contain a short beta strand connected to a 3(10) helix by a short turn, and an N-terminal alpha-helical capping motif. To determine whether folding proceeds along a single, discrete pathway or multiple, parallel pathways, and to map the structure of the transition state ensemble, we examined the effects of destabilizing substitutions of conserved residues in each repeat. We find that, despite the structural redundancy among the repeats, folding proceeds through an N-terminal transition state ensemble in which the extent of structure formation is biased toward repeats one and two and includes both local and interrepeat interactions. Our results suggest that the N-terminal capping motif serves to polarize the folding pathway by acting as a fast-growing nucleus onto which consecutive repeats fold in the transition state ensemble, and highlight the importance of sequence-specific interactions in pathway selection.  相似文献   

3.
There are several different families of repeat proteins. In each, a distinct structural motif is repeated in tandem to generate an elongated structure. The nonglobular, extended structures that result are particularly well suited to present a large surface area and to function as interaction domains. Many repeat proteins have been demonstrated experimentally to fold and function as independent domains. In tetratricopeptide (TPR) repeats, the repeat unit is a helix-turn-helix motif. The majority of TPR motifs occur as three to over 12 tandem repeats in different proteins. The majority of TPR structures in the Protein Data Bank are of isolated domains. Here we present the high-resolution structure of NlpI, the first structure of a complete TPR-containing protein. We show that in this instance the TPR motifs do not fold and function as an independent domain, but are fully integrated into the three-dimensional structure of a globular protein. The NlpI structure is also the first TPR structure from a prokaryote. It is of particular interest because it is a membrane-associated protein, and mutations in it alter septation and virulence.  相似文献   

4.
5.
6.

Background  

Leucine-rich repeats are one of the more common modules found in proteins. The leucine-rich repeat consensus motif is LxxLxLxxNxLxxLxxLxxLxx- where the first 11–12 residues are highly conserved and the remainder of the repeat can vary in size Leucine-rich repeat proteins have been subdivided into seven subfamilies, none of which include members of the epidermal growth factor receptor or insulin receptor families despite the similarity between the 3D structure of the L domains of the type I insulin-like growth factor receptor and some leucine-rich repeat proteins.  相似文献   

7.
The ANK repeat is a ubiquitous 33-residue motif that adopts a beta hairpin helix-loop-helix fold. Multiple tandem repeats stack in a linear manner to produce an elongated structure that is stabilized predominantly by short-range interactions between residues close in sequence. The tumor suppressor p16(INK4) consists of four repeats and represents the minimal ANK folding unit. We found from Phi value analysis that p16 unfolded sequentially. The two N-terminal ANK repeats, which are distorted from the canonical ANK structure in all INK4 proteins and which are important for functional specificity, were mainly unstructured in the rate-limiting transition state for folding/unfolding, while the two C-terminal repeats were fully formed. A sequential unfolding mechanism could have implications for the cellular fate of wild-type and cancer-associated mutant p16 proteins.  相似文献   

8.
Although the folding of alpha-helical repeat proteins has been well characterized, much less is known about the folding of repeat proteins containing beta-sheets. Here we investigate the folding thermodynamics and kinetics of the leucine-rich repeat (LRR) domain of Internalin B (InlB), an extracellular virulence factor from the bacterium Lysteria monocytogenes. This domain contains seven tandem leucine-rich repeats, of which each contribute a single beta-strand that forms a continuous beta-sheet with neighboring repeats, and an N-terminal alpha-helical capping motif. Despite its modular structure, InlB folds in an equilibrium two-state manner, as reflected by the identical thermodynamic parameters obtained by monitoring its sigmoidal urea-induced unfolding transition by different spectroscopic probes. Although equilibrium two-state folding is common in alpha-helical repeat proteins, to date, InlB is the only beta-sheet-containing repeat protein for which this behavior is observed. Surprisingly, unlike other repeat proteins exhibiting equilibrium two-state folding, InlB also folds by a simple two-state kinetic mechanism lacking intermediates, aside from the effects of prolyl isomerization on the denatured state. However, like other repeat proteins, InlB also folds significantly more slowly than expected from contact order. When plotted against urea, the rate constants for the fast refolding and single unfolding phases constitute a linear chevron that, when fitted with a kinetic two-state model, yields thermodynamic parameters matching those observed for equilibrium folding. Based on these kinetic parameters, the transition state is estimated to comprise 40% of the total surface area buried upon folding, indicating that a large fraction of the native contacts are formed in the rate-limiting step to folding.  相似文献   

9.
10.
The light chain 1 (LC1) polypeptide is a member of the leucine-rich repeat protein family and binds at or near the ATP hydrolytic site within the motor domain of the gamma heavy chain from Chlamydomonas outer arm dynein. It consists of an N-terminal helix, a central barrel formed from six leucine-rich repeats that fold as beta beta alpha units, and a C-terminal helical domain that protrudes from the main axis defined by the leucine-rich repeats. Interaction with the gamma heavy chain is likely mediated through a hydrophobic patch on the larger beta sheet face, and the C-terminal region is predicted to insert into the dynein ATP hydrolytic site. Here we have used 1H-15N heteronuclear relaxation measurements obtained at 500 and 600 MHz to refine and validate the LC1 solution structure. In this refined structure, the C-terminal helix is significantly reoriented by more than 20 degrees as compared to the control and provides a more precise understanding of the potential regulatory role of this domain. We also employed the refined structure to perform a dynamic analysis of LC1 using the 600 MHz data set. These results, which were cross validated using the 500 MHz data set, strongly support identification of the predicted LC1 binding surfaces and provide additional insight into the interaction mechanisms of leucine-rich repeat proteins.  相似文献   

11.
Repeat proteins are tandem arrays of a small structural motif, in which tertiary structure is stabilized by interactions within a repeat and between neighboring repeats. Several studies have shown that this modular structure is manifest in modular thermodynamic properties. Specifically, the global stability of a repeat protein can be described by simple linear models, considering only two parameters: the stability of the individual repeated units (H) and the coupling interaction between the units (J). If the repeat units are identical, single values of H and J, together with the number of repeated units, is sufficient to completely describe the thermodynamic behavior of any protein within a series. In this work, we demonstrate how the global stability of a repeat protein can be changed, in a predictable fashion, by modifying only the H parameter. Taking a previously characterized series of consensus tetratricopeptide repeats (TPR) (CTPRa) proteins, we introduced mutations into the basic repeating unit, such that the stability of the individual repeat unit was increased, but its interaction with neighboring units was unchanged. In other words, we increased H but kept J constant. We demonstrated that the denaturation curves for a series of such repeat proteins can be fit and additional curves can be predicted by the one-dimensional Ising model in which only H has changed from the original fit for the CTPRa series. Our results show that we can significantly increase the stability of a repeat protein by rationally increasing the stability of the units (H), whereas the interaction between repeats (J) remains unchanged.  相似文献   

12.
The polypeptides of the platelet von Willebrand factor (vWf) receptor, the GP Ib-IX-V complex, each contain tandem repeats of a sequence that assigns them to the leucine-rich repeat protein family. Here, we studied the role of conserved Asn residues in the leucine-rich repeats of GP Ib alpha, the ligand-binding subunit of the complex. We replaced the Asn residue in the sixth position of the first or sixth leucine-rich repeat (of seven) either with a bulky, charged Lys residue or with a Ser residue (sometimes found in the same position of other leucine-rich repeats) and studied the effect of the mutations on complex expression, modulator-dependent vWf binding, and interactions with immobilized vWf under fluid shear stress. As predicted, the Lys substitutions yielded more severe phenotypes, producing proteins that either were rapidly degraded within the cell (mutant N158K) or failed to bind vWf in the presence of ristocetin or roll on immobilized vWf under fluid shear stress (mutant N41K). The binding of function-blocking GP Ib alpha antibodies to the N41K mutant was either significantly reduced (AK2 and SZ2) or abolished (AN51 and CLB-MB45). Ser mutations were tolerated much better, although both mutants demonstrated subtle defects in vWf binding. These results suggest a vital role for the conserved asparagine residues in the leucine-rich repeats of GP Ib alpha for the structure and functions of this polypeptide. The finding that mutations in the first leucine-rich repeat had a much more profound effect on vWf binding indicates that the more N-terminal repeats may be directly involved in this interaction.  相似文献   

13.
Glycoprotein Ib (GPIb) is a platelet receptor with a critical role in mediating the arrest of platelets at sites of vascular damage. GPIb binds to the A1 domain of von Willebrand factor (vWF-A1) at high blood shear, initiating platelet adhesion and contributing to the formation of a thrombus. To investigate the molecular basis of GPIb regulation and ligand binding, we have determined the structure of the N-terminal domain of the GPIb(alpha) chain (residues 1-279). This structure is the first determined from the cell adhesion/signaling class of leucine-rich repeat (LRR) proteins and reveals the topology of the characteristic disulfide-bonded flanking regions. The fold consists of an N-terminal beta-hairpin, eight leucine-rich repeats, a disulfide-bonded loop, and a C-terminal anionic region. The structure also demonstrates a novel LRR motif in the form of an M-shaped arrangement of three tandem beta-turns. Negatively charged binding surfaces on the LRR concave face and anionic region indicate two-step binding kinetics to vWF-A1, which can be regulated by an unmasking mechanism involving conformational change of a key loop. Using molecular docking of the GPIb and vWF-A1 crystal structures, we were also able to model the GPIb.vWF-A1 complex.  相似文献   

14.
Quinn PJ  Wolf C 《The FEBS journal》2010,277(22):4685-4698
Protein sorting and assembly in membrane biogenesis and function involves the creation of ordered domains of lipids known as membrane rafts. The rafts are comprised of all the major classes of lipids, including glycerophospholipids, sphingolipids and sterol. Cholesterol is known to interact with sphingomyelin to form a liquid-ordered bilayer phase. Domains formed by sphingomyelin and cholesterol, however, represent relatively small proportions of the lipids found in membrane rafts and the properties of other raft lipids are not well characterized. We examined the structure of lipid bilayers comprised of aqueous dispersions of ternary mixtures of phosphatidylcholines and sphingomyelins from tissue extracts and cholesterol using synchrotron X-ray powder diffraction methods. Analysis of the Bragg reflections using peak-fitting methods enables the distinction of three coexisting bilayer structures: (a) a quasicrystalline structure comprised of equimolar proportions of phosphatidylcholine and sphingomyelin, (b) a liquid-ordered bilayer of phospholipid and cholesterol, and (c) fluid phospholipid bilayers. The structures have been assigned on the basis of lamellar repeat spacings, relative scattering intensities and bilayer thickness of binary and ternary lipid mixtures of varying composition subjected to thermal scans between 20 and 50 °C. The results suggest that the order created by the quasicrystalline phase may provide an appropriate scaffold for the organization and assembly of raft proteins on both sides of the membrane. Co-existing liquid-ordered structures comprised of phospholipid and cholesterol provides an additional membrane environment for assembly of different raft proteins.  相似文献   

15.
This paper describes the isolation and characterization of LRP , a new gene from tomato plants. The deduced amino acid sequence showed that the encoded protein is enriched in leucine, and contains interesting structural motifs. LRP contains four tandem repeats of a canonical 24 amino acid leucine-rich repeat (LRR) sequence present in different proteins that mediates molecular recognition and/or interaction processes. Genomic organization and intron-exon arrangement of LRP favor the hypothesis that the LRR domains present in LRP evolved by exon duplication and shuffling. LRP expression analysis and immunohisto-chemical localization studies of the encoded protein indicate that the gene is under developmental regulation exhibiting tissue-specificity, particularly in certain cell types of the stele, like phloem fibers, parenchyma cells of the protoxylem, and in the cell files that constitute the rays of the secondary xylem. It is shown that this gene is upregulated in diseased tomato plants infected with citrus exocortis viroid. However, in this pathogenic context, LRP is processed proteolytically to a lower molecular weight form by a host-induced extracellular protease. The structural characteristics of LRP, its spatio-temporal pattern of expression, and its post-translational processing during pathogenesis, suggest this protein as a candidate molecule that may mediate recognition and interaction events taking place in the plant extracellular matrix under normal and/or pathogenesis-related conditions.  相似文献   

16.
The process of assembly of apolipoprotein (apo) B-containing lipoprotein particles occurs co-translationally after disulfide-dependent folding of the N-terminal domain of apoB but the mechanism is not understood. During a recent database search for protein sequences that contained similar amphipathic beta strands to apoB-100, four vitellogenins, the precursor form of lipovitellin, an egg yolk lipoprotein, from chicken, frog, lamprey, and C. elegans appeared on the list of candidate proteins. The X-ray crystal structure of lamprey lipovitellin is known to contain a "lipid pocket" lined by antiparallel amphipathic beta sheets. Here we report that the first 1000 residues of human apoB-100 (the alpha(1) domain plus the first 200 residues of the beta(1) domain) have sequence and amphipathic motif homologies to the lipid-binding pocket of lamprey lipovitellin. We also show that most of the alpha(1) domain of human apoB-100 has sequence and amphipathic motif homologies to human microsomal triglyceride transfer protein (MTP), a protein required for assembly of apoB-containing lipoproteins. Based upon these results, we suggest that an LV-like "proteolipid" intermediate containing a "lipid pocket" is formed by the N-terminal portion of apoB alone or, more likely, as a complex with MTP. This intermediate produces a lipid nidus required for assembly of apoB-containing lipoprotein particles; pocket expansion through the addition of amphipathic beta strands from the beta(1) domain of apoB results in the formation of a progressively larger high density lipoprotein (HDL)-like, then very low density lipoprotein (VLDL)-like, spheroidal lipoprotein particle.  相似文献   

17.
Many repeat proteins contain capping motifs, which serve to shield the hydrophobic core from solvent and maintain structural integrity. While the role of capping motifs in enhancing the stability and structural integrity of repeat proteins is well documented, their contribution to folding cooperativity is not. Here we examined the role of capping motifs in defining the folding cooperativity of the leucine-rich repeat protein, pp32, by monitoring the pressure- and urea-induced unfolding of an N-terminal capping motif (N-cap) deletion mutant, pp32-?N-cap, and a C-terminal capping motif destabilization mutant pp32-Y131F/D146L, using residue-specific NMR and small-angle X-ray scattering. Destabilization of the C-terminal capping motif resulted in higher cooperativity for the unfolding transition compared to wild-type pp32, as these mutations render the stability of the C-terminus similar to that of the rest of the protein. In contrast, deletion of the N-cap led to strong deviation from two-state unfolding. In both urea- and pressure-induced unfolding, residues in repeats 1–3 of pp32-ΔN-cap lost their native structure first, while the C-terminal half was more stable. The residue-specific free energy changes in all regions of pp32-ΔN-cap were larger in urea compared to high pressure, indicating a less cooperative destabilization by pressure. Moreover, in contrast to complete structural disruption of pp32-ΔN-cap at high urea concentration, its pressure unfolded state remained compact. The contrasting effects of the capping motifs on folding cooperativity arise from the differential local stabilities of pp32, whereas the contrasting effects of pressure and urea on the pp32-ΔN-cap variant arise from their distinct mechanisms of action.  相似文献   

18.
Repeat proteins contain tandem arrays of a simple structural motif. In contrast to globular proteins, repeat proteins are stabilized only by interactions between residues that are relatively close together in the sequence, with no ”long-range” interactions. Our work focuses on the tetratricopeptide repeat (TPR), a 34 amino acid helix-turn-helix motif found in tandem arrays in many natural proteins. Earlier, we reported the design and characterization of a series of consensus TPR (CTPR) proteins, which are built as arrays of multiple tandem copies of a 34 amino acid consensus sequence. Here, we present the results of extensive hydrogen exchange (HX) studies of the folding-unfolding behavior of two CTPR proteins (CTPR2 and CTPR3). We used HX to detect and characterize partially folded species that are populated at low frequency in the nominally folded state. We show that for both proteins the equilibrium folding-unfolding transition is non-two-state, but sequential, with the outermost helices showing a significantly higher probability than inner helices of being unfolded. We show that the experimentally observed unfolding behavior is consistent with the predictions of a simple Ising model, in which individual helices are treated as ”spin-equivalents”. The results that we present have general implications for our understanding of the thermodynamic properties of repeat proteins.  相似文献   

19.
Proteins that share even low sequence homologies are known to adopt similar folds. The beta-propeller structural motif is one such example. Identifying sequences that adopt a beta-propeller fold is useful to annotate protein structure and function. Often, tandem sequence repeats provide the necessary signal for identifying beta-propellers in proteins. In our recent analysis to identify cell surface proteins in archaeal and bacterial genomes, we identified some proteins that contain novel tandem repeats "LVIVD", "RIVW" and "LGxL". In this work, based on protein fold predictions and three-dimensional comparative modeling methods, we predicted that these repeat types fold as beta-propeller. Further, the evolutionary trace analysis of all proteins constituting amino acid sequence repeats in beta-propellers suggest that the novel repeats have diverged from a common ancestor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号