首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of acute and chronic administration of a subconvulsive dose of picrotoxin on t-[35S]butylbicyclophosphorothionate ([3S]TBPS), [3H]muscimol, and [3H]flunitrazepam binding characteristics in various regions and on the convulsant potency of picrotoxin in Sprague-Dawley rats were examined. Acute administration of a subconvulsive dose of picrotoxin (3 mg/kg, i.p.) significantly increased [35S]TBPS and [3H]muscimol binding in cerebellum (CB) with no change in frontal cortex (FC). In rats treated chronically with picrotoxin (3 mg/kg, i.p., daily for 10 days), the Bmax of [35S]TBPS binding site was significantly decreased in the FC, striatum (ST), and CB with no change in KD values. Neither [3H]muscimol binding in the FC and CB nor [3H]flunitrazepam binding in the FC was affected in these rats. In addition, the potency of pentobarbital to inhibit [35S]TBPS binding in vitro was not altered following acute or chronic treatment of picrotoxin. Chronic administration of picrotoxin did not affect convulsive ED50 or LD50 of picrotoxin; however, it delayed the onset of convulsions and increased the time to death. These results suggest that treatment with picrotoxin at a subconvulsive dose for 10 days causes down-regulation of [35S]TBPS binding sites and that this down-regulation might be related, at least in part, to the decreased extent of convulsant potency of picrotoxin. In addition, the results indicate possible interaction between convulsant binding sites and GABAA receptor sites in the CB following picrotoxin treatment.  相似文献   

2.
The effects of acute convulsive doses of pentylentetrazol (PTZ) on [35S]t-butyl-bicyclophosphorothionate (TBPS), [3H]flunitrazepam (FNP), [3H]muscimol, and [3H]-aminobutyric acid (GABA) binding sites were examined in well-washed homogenates of various brain regions of rat. Except for a significant increase in the number of striatal [35S]TBPS binding sites, no significant change in [35S]TBPS, [3H]FNP, [3H]muscimol, and [3H]GABA binding was found in various brain regions 30 min after subcutaneous injection of PTZ at 90 or 100 mg/kg. Similarly there were no significant changes in [35S]TBPS and [3H]FNP binding to unwashed P2 membranes of cerebral cortices 30 min following administration of convulsive doses of PTZ. These experiments failed to demonstrate acute modulation of GABA-A/benzodiazepine/picrotoxinin receptor complex by PTZ in the various brain regions examined except striatum. The significance of the increased [35S]TBPS binding in striatum caused by PTZ remains unclear.  相似文献   

3.
P A Saunders  T Kimura  T Miyaoka  I K Ho 《Life sciences》1992,50(22):1701-1709
Experiments were performed which examined the effects of pentobarbital tolerance and dependence on GABAA receptor antagonist binding. In rats implanted with pentobarbital pellets for 7 days, followed by 24 hours of withdrawal, there was a significant decrease in the latency of TBPS-induced seizures and an increase in [35S]TBPS binding in the frontal cortex. The pentobarbital tolerant rats had a significant increase in the low affinity KD of [3H]SR95531 binding. Removal of the pellets for 24 hours caused a reversal of the effect on the low affinity KD and caused a decrease in the number of low affinity binding sites. In vitro addition of pentobarbital to binding assays produced a decrease in the number of high affinity [3H]SR95531 binding sites without changing low affinity binding. In the cerebellum, the binding in none of the treatment groups was significantly different from placebo. These observations suggest that pentobarbital tolerance and withdrawal cause changes in the properties of the GABAA receptor antagonist binding site which are different from those caused by in vitro exposure to the drug.  相似文献   

4.
t-[35S]Butylbicyclophosphorothionate [( 35S]TBPS) has been shown to bind to the GABAA receptor complex. The binding is modulated allosterically by drugs that interact at components of the receptor complex. The present studies were designed to evaluate the influence of ionic environment and state of equilibrium on the allosteric modification of [35S]TBPS binding. In both I- and Cl- under nonequilibrium conditions, diazepam, gamma-aminobutyric acid (GABA), and pentobarbital (PB) stimulate and methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) inhibits [35S]TBPS binding. In addition, there is an inhibitory component to the effect of GABA and PB at higher drug concentrations. These effects are blocked by the appropriate antagonists for each drug. In Cl-, the stimulation of [35S]TBPS binding by drugs disappears at equilibrium, whereas the inhibition by GABA and PB persists. The inhibitory effect of DMCM in Cl- also disappears at equilibrium. When assayed in I- at equilibrium, however, DMCM stimulates [35S]TBPS binding. In addition, bicuculline, which is without effect under nonequilibrium conditions in either Cl- or I-, stimulates [35S]TBPS binding in I- at equilibrium. The persistent effects of DMCM, bicuculline, and GABA in I- are accompanied by alterations in the affinity of [35S]TBPS for its receptor. In addition, the stimulation of [35S]TBPS binding by GABA is associated with a decreased number of [35S]TBPS binding sites. These data demonstrate that receptor complex interactions with anions influence the responsiveness to drug binding.  相似文献   

5.
The binding of t-[35S]butylbicyclophosphorothionate [( 35S]TBPS) to a site on the GABAA receptor complex is ion dependent. This study was conducted to determine the effects of ion species and concentration on the time course, affinity, and number of sites of [35S]TBPS binding. At a concentration of 200 mM ion, the time to equilibrium for [35S]TBPS binding was shortest for I-, followed by Br- less than Cl- less than F-. A similar rank order was observed for the concentration of ion required to produce half-maximal [35S]TBPS binding. Saturation binding experiments were conducted to evaluate the effect of increasing ion concentration on the KD and Bmax of [35S]TBPS binding. The Bmax was independent of both ion species and concentration. The receptor affinity, however, increased with increasing concentration for each ion. Calculated maximal affinity values were not different between ions; however, the EC50 to produce those values was different among ions and ranked in the same order as that for time course and maximal binding data. Association and dissociation rates for [35S]TBPS binding were greater in I- than in Cl-. These data emphasize the importance of ion selection and incubation times on [35S]TBPS binding.  相似文献   

6.
The effect of in vitro addition of pentobarbital to brain membrane preparations from cerebellum and cortex of C57B1 mice was examined in the presence and absence of the specific GABAA receptor "antagonist" bicuculline. In the cortex pentobarbital produced a biphasic effect (stimulation followed by inhibition) on [35S]TBPS binding, whereas only inhibition of [35S]TBPS binding was observed in the cerebellum. When bicuculline was added to assay mixtures, the stimulatory action of pentobarbital was markedly enhanced in the cortex. In the cerebellum the presence of bicuculline uncovered a biphasic effect of pentobarbital on [35S]TBPS binding, that is lower doses of pentobarbital increased, while higher doses decreased [35S]TBPS to the membrane receptors from the cerebellum.  相似文献   

7.
The effect of the general anesthetic propofol on t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to unwashed membrane preparations from rat cerebral cortex was studied and compared to that of other general anesthetics (pentobarbital, alphaxalone) which are known to enhance GABAergic transmission. Propofol produced a concentration-dependent complete inhibition of [35S]TBPS binding, an effect similar to that induced by pentobarbital and alphaxalone, although these agents differ markedly in potency (alphaxalone greater than propofol greater than pentobarbital). The concomitant addition of propofol either with alphaxalone or pentobarbital produced an additive inhibition of [35S]TBPS binding, suggesting separate sites of action or different mechanisms of these drugs. Moreover, although bicuculline (0.1 microM) completely antagonized the propofol-induced inhibition of [35S]TBPS binding, the effect of this anesthetic was not due to a direct interaction with the gamma-aminobutyric acidA (GABAA) recognition site. In fact, propofol, like alphaxalone and pentobarbital, markedly enhanced [3H]GABA binding in the rat cerebral cortex. Finally, propofol was able to enhance [3H]GABA binding in membranes previously incubated with the specific chloride channel blocker picrotoxin. Taken together these data strongly suggest that propofol, like other anesthetics and positive modulators of GABAergic transmission, might exert its pharmacological effects by enhancing the function of the GABA-activated chloride channel.  相似文献   

8.
The effect of foot-shock stress on t-[35S]butylbicyclophosphorothionate [( 35S]TBPS) binding to fresh unwashed membrane preparations from rat cerebral cortex was studied and was compared to those of GABAA receptor agonists and antagonists and to positive and negative modulators of the GABAergic transmission. [35S]TBPS binding was increased in the cerebral cortex of rats exposed to foot shock compared to that of nonstressed rats. Scatchard analysis revealed that the effect of foot shock was due to an increase in the total number of [35S]TBPS binding sites. In contrast, the in vitro addition of muscimol or GABA induced a dose-dependent inhibition of [35S]TBPS binding, an effect abolished by the concomitant addition of the GABA receptor antagonist, bicuculline, which, per se, enhanced [35S]TBPS binding by 73%. Thus, bicuculline, similar to stress, increased [35S]TBPS binding in the same membrane preparation. In contrast to stress, the anxiolytic and positive modulators of the GABAergic transmission (ZK 93423, ZK 91296, and diazepam) inhibited the specific binding of [35S]TBPS in a concentration-dependent manner. The greatest inhibitory effect was produced by ZK 93423 at 30 microM (31% of control), followed by diazepam (54% of control) and by the partial agonist ZK 91296 (61% of control). Scatchard plot analysis indicated that the inhibition induced by ZK 93423 and diazepam was due to a decrease in the density of [35S]TBPS recognition sites. On the other hand, the anxiogenic beta-carbolines DMCM and FG 7142 mimicked the effect of stress. Thus, at a 10 microM concentration, DMCM and FG 7142 increased [35S]TBPS binding by 22% and 26%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of preincubating cerebral cortical membranes with phospholipase A2 (PLA2) were examined on radioligand binding to benzodiazepine receptors of the "central" and "peripheral" types. PLA2 (0.005-0.1 U/ml) increased [3H]flunitrazepam and [3H]3-carboethoxy-beta-carboline binding by increasing the apparent affinities of these ligands with no concomitant change in the maximum number of binding sites. In contrast, neither gamma-aminobutyric acid (GABA)-enhanced [3H]flunitrazepam binding nor [3H]Ro 15-1788 binding was altered by preincubation with PLA2 at concentrations as high as 2 U/ml. Both pyrazolopyridine (SQ 65,396)- and barbiturate (pentobarbital)-enhanced [3H]flunitrazepam binding and [35S]t-butylbicyclophosphorothionate (TBPS) binding were markedly reduced by as little as 0.0025-0.005 U/ml of PLA2. These findings suggest that PLA2 inactivates the TBPS binding site on the benzodiazepine-GABA receptor chloride ionophore complex, which results in a selective loss of allosteric "regulation" between the components of this complex. PLA2 also reduced the apparent affinity of [3H]Ro 5-4864 to peripheral-type benzodiazepine receptors in cerebral cortical, heart, and kidney membranes, but increased the number of [3H]PK 11195 binding sites with no change in apparent affinity. These data demonstrate that PLA2 can differentially affect the lipid microenvironment of "central" and "peripheral" types of benzodiazepine receptors.  相似文献   

10.
The acute administration of pentylenetetrazol (PTZ; 25-75 mg/kg i.p.) failed to modify the specific binding of t-[35S]butylbicyclophosphorothionate ([35S]TBPS) to membrane preparations from the cerebral cortex of the rat. In contrast, the repeated administration of PTZ (30 mg/kg i.p., three times a week for 12 weeks) reduced by 26% the density of [35S]TBPS binding sites without modifying the dissociation constant. This effect was observed 3 days after the last PTZ administration. A parallel reduction of gamma-aminobutyric acid (GABA)-stimulated 36Cl- uptake was measured in the cerebral cortex of PTZ-treated rats 3 days after the last injection. The repeated administration of PTZ produced sensitization to the drug, or chemical kindling. In fact, no convulsions were observed in the first week of treatment, but all the animals became sensitized to PTZ by the 12th week. The results are consistent with the hypothesis that chronic treatment with PTZ at a subconvulsant dose causes a decrease in GABA-coupled chloride channel activity that may be related to the chemical kindling produced by this compound.  相似文献   

11.
A M Allan  R A Harris 《Life sciences》1986,39(21):2005-2015
Effects of ethanol and pentobarbital on the GABA receptorchloride channel complex were evaluated in mice selected for differential sensitivity to the hypnotic effects of ethanol (long sleep and short sleep lines). 36Cl- influx, [35S]tbutylbicyclophosphorothionate (TBPS) and [3H]muscimol binding were measured in a membrane vesicle suspension (microsacs) from cerebellum or forebrain. Muscimol was found to be a more potent stimulator of 36Cl- flux in the LS cerebellum, as compared to the SS cerebellum, but a similar maximal level of uptake was achieved in the two lines. Muscimol displaced [35S]TBPS (a ligand for the convulsant site) from cerebellar microsacs, and LS mice were also more sensitive than SS mice to this action of muscimol. However, the number or affinity of high affinity [3H]muscimol binding sites did not differ between the lines. Physiologically relevant concentrations of ethanol (15-50 mM) potentiated muscimol stimulation of 36Cl- uptake in LS cerebellum but had no effect in SS cerebellum. Ethanol failed to alter stimulated chloride flux hippocampal microsacs from either line. Both the LS and SS lines responded similarly to pentobarbital potentiation of muscimol stimulated chloride uptake regardless of brain region. The demonstrated difference between the LS and SS mice in muscimol stimulated chloride uptake as well as in muscimol displacement of [35S]TBPS binding offers a biochemical explanation for the line differences in behavioral responses to GABAergic agents. Moreover, the findings suggest that genetic differences in ethanol hypnosis are related to differences in the sensitivity of GABA-operated chloride channels to ethanol.  相似文献   

12.
The effect of in vivo administration of ethanol on the gamma-aminobutyric acidA (GABAA) receptor-coupled chloride channel was studied by measuring ex vivo t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding in the rat cerebral cortex. Intragastric administration of ethanol (0.5-1 g/kg) elicited in 40 min a significant decrease of [35S]TBPS binding to unwashed cortical membrane preparations, an effect mimicked by diazepam (0.5-1 mg/kg, i.p.). However, Scatchard plot analysis indicated that, unlike the case with diazepam, the decrease was entirely due to a reduction in the apparent affinity of [35S]TBPS receptors with no change in the total number of binding sites. Moreover, ethanol, like diazepam, reduced the increase of [35S]TBPS binding elicited by isoniazid (350 mg/kg, s.c.), an inhibitor of the GABAergic transmission. Finally, ethanol markedly potentiated the inhibitory action of diazepam on [35S]TBPS binding. The results suggest that ethanol, like benzodiazepines, enhances the function of the GABAA-coupled chloride channel.  相似文献   

13.
The characteristics of [3H]strychnine and t-[35S]-butylbicyclophosphorothionate ([35S]TBPS) binding to sites associated with glycine- and gamma-aminobutyric acid (GABA)-gated chloride channels were compared in the presence of a series of anions with known permeabilities through these channels. Good correlations were found between (a) the potencies (EC50) of these anions to stimulate radioligand binding and their permeabilities relative to chloride; (b) the affinities (KD) of these radioligands in the presence of fixed concentrations of these anions and their relative permeabilities; (c) the potencies (EC50) of these anions to stimulate [35S]TBPS and [3H]strychnine binding; and (d) the affinities (KD) of [3H]strychnine and [35S]TBPS measured at a fixed concentration of these anions. These studies support electrophysiological and biochemical observations demonstrating similarities between glycine- and GABA-gated chloride channels, and suggest that anions enhance [3H]strychnine and [35S]TBPS binding through specific anion binding sites located at the channels.  相似文献   

14.
A gamma-aminobutyrate/benzodiazepine receptor complex has been purified from bovine cerebral cortex by an improved procedure using a zwitterionic detergent. A high affinity binding site for the chloride ion channel-blocking ligand [35S]t-butyl bicyclophosphorothionate ( TBPS ) was co-purified with the high affinity binding sites for gamma-aminobutyrate and benzodiazepines. The latter two have previously been shown to reside on the same physical structure ( Sigel , E., Stephenson , F.A., Mamalaki , C., and Barnard , E. A. (1983) J. Biol. Chem. 258, 6965-6971). The dissociation constants, as measured in assay medium containing zwitterionic detergent were 90 +/- 20 nM for TBPS and 11 +/- 4 nM for [3H]flunitrazepam, whereas the binding of [3H]muscimol, a gamma-aminobutyrate agonist, showed a more complex binding behavior with more than one site. If the same preparation was assayed in a medium containing instead Triton X-100 as the detergent, the binding of TBPS was strongly inhibited, [3H]flunitrazepam binding was unaffected, and [3H]muscimol bound to a single class of sites with a dissociation constant of 33 +/- 3 nM. Regulatory interactions were retained in the complex isolated by the improved method: [3H]flunitrazepam binding was stimulated by gamma-aminobutyrate or by pentobarbital, and in a dose-dependent manner. The same two subunit types of Mr = 53,000 and 57,000 are present in the purified receptor complex as previously reported.  相似文献   

15.
Muscimol and t-butylbicyclophosphorothionate (TBPS) are known to label two distinct sites within the gamma-aminobutyric acidA (GABAA) receptor complex, i.e., the GABA recognition site and the chloride ionophore, respectively. Age-dependent changes in the specific binding of [3H]muscimol and [35S]TBPS were compared in membranes prepared from the cerebral cortex of rats, 2-800 days old. Perinatal (day 2) binding of muscimol and TBPS represented 8 and 20% of the respective values for adults (day 180). After the first week, muscimol binding increased more rapidly than TBPS binding. Levels near those of adults were reached at day 20 and remained practically unchanged in adulthood (day 180). In aged (780-day-old) rats, the binding of TBPS was significantly reduced, whereas muscimol binding did not change compared with adult values. This decrease of TBPS binding derived from a reduced density of binding sites, rather than from affinity changes. The allosteric responsiveness of TBPS binding to exogenous GABA was also reduced in aged animals. These findings indicate an age-related change in the molecular (structural) organization of the GABAA receptor-chloride ionophore complex in rat cerebral cortex.  相似文献   

16.
4-aminobutyric acid (GABA)-gated chloride ion channels are important molecular targets for a number of polychlorocycloalkane compounds including cyclodiene insecticides. Previous radioligand binding studies have indicated that cyclodiene insecticides are potent inhibitors of [35S]t-butylbicyclophosphorothionate ([35S]TBPS) binding to housefly thorax and abdomen membranes. In the present study, a laboratory-reared, cyclodiene-resistant (CYW) housefly strain (Musca domestica) showed resistance to a number of cyclodiene insecticides. Specific, saturable [35S]TBPS binding was detected in thorax and abdomen membranes prepared from housefly strains susceptible (CSMA) and resistant (CYW) to cyclodienes. Scatchard analysis of [35S]TBPS binding data from CSMA and CYW membranes revealed no significant differences between the two strains in either the affinity (Kd) or the density (Bmax) of specific, saturable binding sites. There were no differences in the comparative effectiveness of a range of polychlorocycloalkanes, including cyclodiene insecticides, as inhibitors of specific [35S]TBPS binding to CSMA and CYW thorax and abdomen membranes. Therefore, if an alteration in target site is a mechanism for resistance to cyclodienes in the CYW strain, it is not readily measurable using [35S]TBPS.  相似文献   

17.
Bicuculline Up-Regulation of GABAA Receptors in Rat Brain   总被引:2,自引:2,他引:0  
Effects of acute and subacute administration of bicuculline on [3H]muscimol, [3H]flunitrazepam, and t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to various brain regions were studied in Sprague-Dawley rats. Acute administration of bicuculline affected neither the KD nor the Bmax of the three receptor sites. In rats treated subacutely with bicuculline (2 mg/kg, i.p., daily for 10 days), [3H]muscimol binding was increased in the frontal cortex, cerebellum, striatum, and substantia nigra. Scatchard analysis revealed that subacute treatment of rats with bicuculline resulted in a significantly lower KD of high-affinity sites in the striatum and in a significantly lower KD of high- and low-affinity sites in the frontal cortex. In the cerebellum, two binding sites were apparent in controls and acutely treated animals; however, only the high-affinity site was defined in subacutely treated animals, with an increase in the Bmax value. Triton X-100 treatment of frontal cortical membranes eliminated the difference in [3H]muscimol binding between control and subacute bicuculline treatments. On the other hand, [3H]muscimol binding was significantly increased in the cerebellum from bicuculline-treated animals even after Triton X-100 treatment. The apparent Ki of bicuculline for the GABAA receptor was also decreased in the frontal cortex and the striatum following the treatment. However, subacute administration of bicuculline affected neither the KD nor the Bmax of [3H]flunitrazepam and [35S]TBPS binding in the frontal cortex and the cerebellum. These results suggest that GABAA receptors are up-regulated after subacute administration of bicuculline, with no change in benzodiazepine and picrotoxin binding sites.  相似文献   

18.
t-[35S]Butylbicyclophosphorothionate Binding Sites in Invertebrate Tissues   总被引:1,自引:0,他引:1  
Specific high affinity binding of the cage convulsant t-[35S]butylbicyclophosphorothionate (TBPS) was observed in membrane homogenates of housefly heads and crayfish abdominal muscles. [35S]TBPS binding in these two invertebrate tissues was inhibited by biologically active cage convulsants, picrotoxin analogs, and barbiturates. The housefly binding sites were inhibited most potently by several insecticides. Approximately 50% of total binding was displaceable by excess (0.1 mM) nonradioactive TBPS, picrotoxinin, ethyl bicyclophosphate, or dieldrin. Optimal binding assay conditions for housefly homogenates included pH 7.5, 22 degrees C temperature, 0.3 M chloride concentration, and incubation for 60 min; for crayfish homogenates, 4 degrees C temperature and 150-min incubations were optimal. Scatchard plots of equilibrium binding indicated one site in both tissues (KD = 50 nM, Bmax = 250 fmol/mg protein in housefly; KD = 25 nM, Bmax = 100 fmol/mg protein in crayfish). Association kinetics in housefly were consistent with one rate constant (k+1 = 8 X 10(6) M-1 min-1), but dissociation was described better by two rate constants (k-1 = 0.28 min-1 and 0.042 min-1; calculated KD values of 80 nM and 12 nM). Displacement by cage convulsants showed Hill numbers near 0.5, also consistent with two populations of affinity, while displacement by other drugs showed Hill numbers near 1.0. [35S]TBPS binding in insects was most potently inhibited by the insecticides dieldrin (IC50 = 50 nM), aldrin, and lindane (200 nM), in a stereospecific manner, consistent with this binding site being the receptor for biological toxicity. [35S]TBPS binding was also inhibited by relatively high concentrations of some pyrethroid insecticides, such as deltamethrin and cypermethrin (1-2 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Specific binding of [35S]t-butylbicyclophosphorothionate (TBPS) to membranes from cerebral hemispheres of adult rat and chicken was determined over a range of radioligand concentrations from 0.25 to 500 nM. Scatchard plots of these data were curvilinear and nonlinear regression analysis indicated binding to two sites that differ in affinity. For rat cerebrum, KD(1) = 1.15 nM, Bmax(1) = 0.085 pmol/mg; KD(2) = 232 nM, Bmax(2) = 16.9 pmol/mg. For chicken cerebrum, KD(1) = 1.39 nM, Bmax(1) = 0.111 pmol/mg; KD(2) = 166 nM, Bmax(2) = 17.6 pmol/mg. This multiplicity of [35S]TBPS binding was further confirmed when unlabeled TBPS or picrotoxinin displaced radioligand. The displacement curves were biphasic and yielded Hill coefficients from 0.65 to 0.70. These displacement curves were also resolved into two components with distinct IC50 values for unlabeled TBPS (rat, 1.55 and 271 nM; chicken, 2.40 and 224 nM). The IC50 values were similar to the dissociation constants obtained from equilibrium binding measurements.  相似文献   

20.
Specific binding of [35S]t-butylbicyclophosphorothionate (TBPS) to rat brain membranes (RBM) is enhanced nine-fold by EDTA/water dialysis and 1.3- to 4.2-fold by 50 nM ketosteroid R 5135, or 5 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or related piperazine-N-alkanesulfonate buffers, or extensive washing with NaCl/Na phosphate or Na phosphate/citrate solution. About one-fifth of the [35S]TBPS binding capacity appears in the soluble fraction whereas the rest remains in particulate form on treatment of the EDTA/water-dialyzed RBM with 20 mM CHAPS. Similar KD values (64-86 nM) are obtained for the original EDTA/water-dialyzed membranes and the CHAPS-treated and/or -solubilized preparations. The Bmax of the EDTA-treated RBM is reduced five-fold on solubilization with CHAPS. The potency for displacement of [35S]TBPS changes in the presence of CHAPS or on CHAPS solubilization: gamma-aminobutyric acid (GABA) and muscimol inhibit specific [35S]TBPS binding more strongly in the absence than in the presence of CHAPS: TBPS, picrotoxinin, and photoheptachlor epoxide are almost equally active with RBM, RBM + CHAPS, and RBM solubilized with CHAPS. Levels of (1R, alpha S)-cis-cypermethrin and dimethylbutylbarbiturate which are inhibitory with RBM are moderately stimulatory after TBPS receptor solubilization. Thus CHAPS defines three regions of the GABA receptor-ionophore complex, i.e., the GABA and benzodiazepine receptors, the TBPS/picrotoxinin/polychlorocycloalkane receptor(s), and the sites at which the alpha-cyano pyrethroid and the barbiturate interact with TBPS binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号