首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid zones have yielded considerable insight into many evolutionary processes, including speciation and the maintenance of species boundaries. Presented here are analyses from a hybrid zone that occurs among three salamanders –Plethodon jordani, Plethodon metcalfi and Plethodon teyahalee– from the southern Appalachian Mountains. Using a novel statistical approach for analysis of non‐clinal, multispecies hybrid zones, we examined spatial patterns of variation at four markers: single‐nucleotide polymorphisms (SNPs) located in the mtDNA ND2 gene and the nuclear DNA ILF3 gene, and the morphological markers of red cheek pigmentation and white flecks. Concordance of the ILF3 marker and both morphological markers across four transects is observed. In three of the four transects, however, the pattern of mtDNA is discordant from all other markers, with a higher representation of P. metcalfi mtDNA in the northern and lower elevation localities than is expected given the ILF3 marker and morphology. To explore whether climate plays a role in the position of the hybrid zone, we created ecological niche models for P. jordani and P. metcalfi. Modelling results suggest that hybrid zone position is not determined by steep gradients in climatic suitability for either species. Instead, the hybrid zone lies in a climatically homogenous region that is broadly suitable for both P. jordani and P. metcalfi. We discuss various selective (natural selection associated with climate) and behavioural processes (sex‐biased dispersal, asymmetric reproductive isolation) that might explain the discordance in the extent to which mtDNA and nuclear DNA and colour‐pattern traits have moved across this hybrid zone.  相似文献   

2.
Two zones of intergradation between populations of Plethodon have been studied for 18 and 20 years, respectively. The data consist of systematic scores of colors, made at least twice annually. Near Heintooga Overlook in the Balsam Mountains (Great Smoky Mountains National Park), the salamanders' cheeks are gray. Proceeding north toward the Smokies, there is increasing frequency and intensity of red color at two, four, and six miles. There has been no change in the scores at any location. The width of the zone and our failure to detect any change can be explained by assuming neutrality of the character and random diffusion during the probable time since contact between the two intergrading forms, which most likely took place after the Hypsithermal Interval, 8,000–5,000 BP. At Coweeta Hydrologic Laboratory in the Nantahala Mountains, Plethodon jordani and P. glutinosus hybridize at intermediate elevations. The lateral white spots of glutinosus decrease and the red on the legs of jordani increases with elevation from 685 m to 1,052 m. At the higher elevation, the proportion of animals scored as “pure” jordani declined significantly from 1974 to 1990, an indication that the hybrid zone is spreading upward. The rate of spread is too great to be explained by random diffusion, so selection for glutinosus characters is the best explanation. The rate of spread of the hybrid zone indicates that hybridization began 60–65 years ago, at the end of the time of intense timbering. Such human disturbances have caused hybridization in other organisms.  相似文献   

3.
Climate change poses several challenges to biological communities including changes in the frequency of encounters between closely related congeners as a result of range shifts. When climate change leads to increased hybridization, hybrid dysfunction or genetic swamping may increase extinction risk—particularly in range‐restricted species with low vagility. The Peaks of Otter Salamander, Plethodon hubrichti, is a fully terrestrial woodland salamander that is restricted to ~18 km of ridgeline in the mountains of southwestern Virginia, and its range is surrounded by the abundant and widespread Eastern Red‐backed Salamander, Plethodon cinereus. In order to determine whether these two species are hybridizing and how their range limits may be shifting, we assessed variation at eight microsatellite loci and a 1,008 bp region of Cytochrome B in both species at allopatric reference sites and within a contact zone. Our results show that hybridization between P. hubrichti and P. cinereus either does not occur or is very rare. However, we find that diversity and differentiation are substantially higher in the mountaintop endemic P. hubrichti than in the widespread P. cinereus, despite similar movement ability for the two species as assessed by a homing experiment. Furthermore, estimation of divergence times between reference and contact zone populations via approximate Bayesian computation is consistent with the idea that P. cinereus has expanded into the range of P. hubrichti. Given the apparent recent colonization of the contact zone by P. cinereus, future monitoring of P. cinereus range limits should be a priority for the management of P. hubrichti populations.  相似文献   

4.
Climate change represents a significant threat to amphibians. However, for many species, the relationship between demography and climate is unknown, which limits predictive models. Here, we describe the life history variation of Plethodon montanus using capture–recapture data over a period of 4 years, along an elevational gradient to determine how survival and growth vary with climate, and how these relationships vary with elevation. We used a hierarchical model to estimate asymptotic size and growth rate and a spatial Cormack-Jolly-Seber model to estimate the probability of capture and survival and dispersal variance. We found that during the active season, growth and survival rates are both positively affected by precipitation; however, while survival was positively affected by temperature at all elevations, higher temperatures led to a decrease in growth at lower elevations, while at higher elevations the opposite was true. During the inactive season, we found reduced growth rates, whereas survival was lower compared with the active at lower elevations but was higher at higher elevations. Increased inactive season temperatures resulted in decreased survival while we found that temperature, amount of snow, and elevation interacted to influence survival. At low elevations, which were warmer, survival decreased with increasing snowfall but at higher elevations, survival generally increased with increasing snowfall. Our results demonstrate that understanding how the environment can affect salamander demography to develop mechanistic models will require knowledge of the actual environmental conditions experienced by a given population as well as an understanding of the overall differences in climate at a given site.  相似文献   

5.
We isolated 13 variable dinucleotide microsatellites from red‐backed salamanders (Plethodon cinereus). After generating fragments using degenerate oligonucleotide primer‐polymerase chain reaction (DOP‐PCR), AC repeats were captured using biotinylated probes and streptavidin‐coated magnetic particles. Captured fragments were cloned into plasmids, screened for microsatellites with a simple PCR reaction, and select plasmids then sequenced. PCR primers were designed and optimized for robust amplification, and nine primers have been further optimized for multiplex reactions with fluorescent primers. These nine loci are variable with an average of 6.11 alleles per locus and an average heterozygosity of 0.61.  相似文献   

6.
Courtship pheromones play an important role in salamander reproductive behaviour. In salamanders of the family Plethodontidae, males deliver specialized pheromones to females during courtship interactions. These courtship pheromones increase female receptivity and may be involved in mate discrimination. In order to test hypotheses related to mate discrimination, we staged courtship encounters between male-female Plethodon shermani pairs in which the female received pheromones obtained from either conspecific (P. shermani) or heterospecific (P. yonahlossee orP. montanus ) males. Both conspecific and heterospecific pheromones increased female receptivity. Moreover, pheromones from both heterospecific species were as effective as the conspecific pheromone in increasing female receptivity inP. shermani females. Our results suggest that the courtship pheromone signal and function may be conserved across related species, with mate discrimination occurring before pheromone delivery. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.  相似文献   

7.
Phylogenetic hypotheses are frequently used to examine variation in rates of diversification across the history of a group. Patterns of diversification‐rate variation can be used to infer underlying ecological and evolutionary processes responsible for patterns of cladogenesis. Most existing methods examine rate variation through time. Methods for examining differences in diversification among groups are more limited. Here, we present a new method, parametric rate comparison (PRC), that explicitly compares diversification rates among lineages in a tree using a variety of standard statistical distributions. PRC can identify subclades of the tree where diversification rates are at variance with the remainder of the tree. A randomization test can be used to evaluate how often such variance would appear by chance alone. The method also allows for comparison of diversification rate among a priori defined groups. Further, the application of the PRC method is not restricted to monophyletic groups. We examined the performance of PRC using simulated data, which showed that PRC has acceptable false‐positive rates and statistical power to detect rate variation. We apply the PRC method to the well‐studied radiation of North American Plethodon salamanders, and support the inference that the large‐bodied Plethodon glutinosus clade has a higher historical rate of diversification compared to other Plethodon salamanders.  相似文献   

8.
In Batesian mimicry a palatable mimic deceives predators by resembling an unpalatable model. The evolution of Batesian mimicry relies on the visual capabilities of the potential predators, as prey detection provides the selective force driving evolutionary change. We compared the visual capabilities of several potential predators to test predictions stemming from the hypothesis of Batesian mimicry between two salamanders: the model species Notophthalmus viridescens, and polymorphic mimic, Plethodon cinereus. First, we found mimicry to be restricted to coloration, but not brightness. Second, only bird predators appeared able to discriminate between the colors of models and nonmimic P. cinereus. Third, estimates of salamander conspicuousness were background dependent, corresponding to predictions only for backgrounds against which salamanders are most active. These results support the hypothesis that birds influence the evolution of Batesian mimicry in P. cinereus, as they are the only group examined capable of differentiating N. viridescens and nonmimetic P. cinereus. Additionally, patterns of conspicuousness suggest that selection from predators may drive the evolution of conspicuousness in this system. This study confirms the expectation that the visual abilities of predators may influence the evolution of Batesian mimicry, but the role of conspicuousness may be more complex than previously thought.  相似文献   

9.
Amidst the rapid advancement in next‐generation sequencing (NGS) technology over the last few years, salamanders have been left behind. Salamanders have enormous genomes—up to 40 times the size of the human genome—and this poses challenges to generating NGS data sets of quality and quantity similar to those of other vertebrates. However, optimization of laboratory protocols is time‐consuming and often cost prohibitive, and continued omission of salamanders from novel phylogeographic research is detrimental to species facing decline. Here, we use a salamander endemic to the southeastern United States, Plethodon serratus, to test the utility of an established protocol for sequence capture of ultraconserved elements (UCEs) in resolving intraspecific phylogeographic relationships and delimiting cryptic species. Without modifying the standard laboratory protocol, we generated a data set consisting of over 600 million reads for 85 P. serratus samples. Species delimitation analyses support recognition of seven species within P. serratus sensu lato, and all phylogenetic relationships among the seven species are fully resolved under a coalescent model. Results also corroborate previous data suggesting nonmonophyly of the Ouachita and Louisiana regions. Our results demonstrate that established UCE protocols can successfully be used in phylogeographic studies of salamander species, providing a powerful tool for future research on evolutionary history of amphibians and other organisms with large genomes.  相似文献   

10.
Montane regions can promote allopatric speciation and harbor unique species with small ranges. The southern Appalachians are a biodiversity hotspot for salamanders, and several montane endemics occur in the region. Here, we present the first DNA sequence data for Plethodon sherando, a terrestrial salamander recently discovered in the Blue Ridge Mountains of Virginia. We sequenced two mitochondrial regions (cyt-b and CO1) from salamanders at reference sites near the center of P. sherando’s range and from two contact zones where P. sherando populations are replaced by Plethodon cinereus, the Northern Red-Backed salamander. We then used these sequence data to examine divergence and hybridization between the two taxa. We found P. sherando and P. cinereus morphotypes from contact zones to be reciprocally monophyletic and highly divergent (~17%). P. sherando exhibited very low sequence diversity (π = 0.0010) as compared to P. cinereus from the same locations (π = 0.0096). Salamander morphology in the contact zone was as distinct as morphology at reference sites, and discriminant function analysis based on morphology successfully classified 98% of salamanders to their mitochondrial lineage. Phylogenetic analysis of cyt-b sequences showed P. sherando to be sister to Plethodon serratus (the Southern Red-Backed salamander) rather than P. cinereus or any nearby mountaintop endemics. Our results suggest that P. sherando is a distinct lineage that is not subject to substantial introgression from P. cinereus and that may have a history of geographic isolation. Given its limited range (<80 km2), we believe P. sherando should merit a conservation status similar to that of other mountaintop salamanders in the region.  相似文献   

11.
To advance the development of conservation planning for rare species with small geographic ranges, we determined habitat associations of Siskiyou Mountains salamanders (Plethodon stormi) and developed habitat suitability models at fine (10 ha), medium (40 ha), and broad (202 ha) spatial scales using available Geographic Information Systems data and logistic regression analysis with an information theoretic approach. Across spatial scales, there was very little support for models with structural habitat features, such as tree canopy cover and conifer diameter. Model-averaged 95% confidence intervals for regression coefficients and associated odds ratios indicated that the occurrence of Siskiyou Mountains salamanders was positively associated with rocky soils and Pacific madrone (Abutus menziesii) and negatively associated with elevation and white fir (Abies concolor); these associations were consistent across 3 spatial scales. The occurrence of this species also was positively associated with hardwood density at the medium spatial scale. Odds ratios projected that a 10% decrease in white fir abundance would increase the odds of salamander occurrence 3.02–4.47 times, depending on spatial scale. We selected the model with rocky soils, white fir, and Oregon white oak (Quercus garryana) as the best model across 3 spatial scales and created habitat suitability maps for Siskiyou Mountains salamanders by projecting habitat suitability scores across the landscape. Our habitat suitability models and maps are applicable to selection of priority conservation areas for Siskiyou Mountains salamanders, and our approach can be easily adapted to conservation of other rare species in any geographical location.  相似文献   

12.
Red-backed salamanders, Plethodon cinereus, use territorialadvertisement in the form of agonistic displays and pheromonalscent marking as a mechanism for intraspecific interferencecompetition. Although ecological and behavioral interactionsamong species of salamanders have been well studied, littleis known about the interactions between territorial P. cinereusand other ecologically similar species, such as large predatoryinvertebrates. Our field data indicate that P. cinereus anda large syntopic centipede, Scolopocryptops sexspinosus, exhibitnegative spatial associations in natural habitats, possiblyindicating interspecific territoriality. Only seven instancesof salamander/centipede co-occurrence were recorded from a fieldsample of 247 occupied cover objects. Cover object size waspositively correlated with salamander SVL (tip of the snoutto the anterior end of the cloaca), but there was no correlationof cover object size to centipede length. Data on the abilityof P. cinereus to differentiate among chemicals on the substratesuggest that visual cues are not necessary to elicit a territorialresponse from intruding salamanders. Although in laboratorytrials salamanders behaved similarly toward intruders of bothspecies, biting was directed only toward centipedes. Salamandersspent significantly more time approaching centipedes than theydid approaching other salamanders. Approach behavior was oftenassociated with nose tapping and may be an investigative, ratherthan aggressive, behavior. We suggest that territorial P. cinereusrespond similarly to intruding salamanders and centipedes, butthat they escalate more readily to biting centipedes becauseS. sexspinosus is sightless and thus unable to respond to visualsignals.  相似文献   

13.
Climate change is expected to systematically alter the distribution and population dynamics of species around the world. The effects are expected to be particularly strong at high latitudes and elevations, and for ectothermic species with small ranges and limited movement potential, such as salamanders in the southern Appalachian Mountains. In this study, we sought to establish baseline abundance estimates for plethodontid salamanders (family: Plethodontidae) over an elevational gradient in Great Smoky Mountains National Park. In addition to generating these baseline data for multiple species, we describe methods for surveying salamanders that allow for meaningful comparisons over time by separating observation and ecological processes generating the data. We found that Plethodon jordani had a mid‐elevation peak (1,500 m) in abundance and Desmognathus wrighti increased in abundance with elevation up to the highest areas of the park (2025 m), whereas Eurycea wilderae increased in abundance up to 1,600 m and then plateaued with increasing uncertainty. Litter depth, herbaceous ground cover, and proximity to stream were also important predictors of abundance (dependent upon species), whereas daily temperature, precipitation, ground cover, and humidity influenced detection rates. Our data provide some of the first minimally biased information for future studies to assess changes in the abundance and distribution of salamanders in this region. Understanding abundance patterns along with detailed baseline distributions will be critical for comparisons with future surveys to understand the population and community‐level effects of climate change on montane salamanders.  相似文献   

14.
Many animal and plant taxa reach their highest endemism and species richness in montane regions. The study of elevational range limits is central to understanding this widespread pattern and to predicting the responses of montane species to climate change. Yet, because large‐scale manipulations of the distributions of most species are difficult, the causes of species’ elevational range limits (e.g. competitive interactions, physiological specialization) are poorly understood. Here, we harness the power of new mechanistic approaches to dissect the factors that underlie the elevational replacement of two salamander species in the Appalachian Highlands. Our results challenge the long‐held idea that competitive interactions drive the lower elevational range limits of montane species and that physiological stress prevents low‐elevation species from expanding to high elevations. We show that physiological constraints drive the lower elevational range limit of the montane‐endemic species, Plethodon jordani. Conversely, we find that competition with P. jordani prevents the low‐elevation species, P. teyahalee, from expanding its range to include higher‐elevation habitats. These results are broadly consistent with the biogeography and behavior of other montane species, suggesting that similar mechanisms underlie patterns of elevational zonation across a variety of taxa and montane regions. To the extent that our findings are taxonomically and geographically widespread, these results challenge the idea that competitive release at species’ lower elevational range limits is driving the downslope range shifts exhibit by some montane taxa. Instead, our results raise the sobering possibility that even small changes in climate might cause erosion of the ranges of many high‐elevation species.  相似文献   

15.
Parasites have been shown to impair the behaviour of their hosts, compromising the host's ability to exploit and compete for resources. We conducted two experiments to determine whether infestation with an ectoparasitic mite (Hannemania eltoni) was associated with changes in aggressive and foraging behaviour in the Ozark zigzag salamander, Plethodon angusticlavius. In a first experiment, male salamanders with high parasite loads were less aggressive overall than males with low parasite loads during territorial disputes. In addition, males with high parasite loads were more aggressive toward opponents with high parasite loads (symmetric contests) than toward opponents with low parasite loads (asymmetric contests). In contrast, males with low parasite loads did not adjust their level of aggression according to the parasite load of the opponent. In a second experiment, foraging behaviour of females was tested in response to ‘familiar’ (Drosophila) prey and ‘novel’ (termite) prey. Latency to first capture was significantly longer for parasitized than non‐parasitized females when tested with ‘familiar’ prey, but not for ‘novel’ prey. Our results suggest that parasite‐mediated effects may have profound influences on individual fitness in nature.  相似文献   

16.
Alicia Mathis 《Oecologia》1991,86(3):433-440
Summary I used a mark-recapture study to estimate home areas for 107 red-backed salamanders (Plethodon cinereus) in a natural forest habitat. Both males and females of this species defend feeding territories, but I presume that some individuals in this relatively highdensity population (approximately 2.8 salamanders per m2) are nonterritorial floaters. Although territorial salamanders exhibited greater numbers of tail autotomies, they had significantly longer relative tail lengths. This difference suggests that territorial individuals gain benefits from territorial ownership. From the observation that home area size was inversely correlated with body size, I infer that larger animals gained higher quality foraging areas. Home areas of adults were significantly more segregated intrasexually and more aggregated intersexually than would be expected from a random distribution. Furthermore, intersexual overlap of home areas was significantly greater than intrasexual home area overlap. Territorial defense of feeding areas by male and female red-backed salamanders therefore also may play a role in mating behavior.  相似文献   

17.
The flow of energy within an ecosystem can be considered either top‐down, where predators influence consumers, or bottom‐up, where producers influence consumers. Plethodon cinereus (Red‐backed Salamander) is a terrestrial keystone predator who feeds on invertebrates within the ecosystem. We investigated the impact of the removal of P. cinereus on the detritivore food web in an upland deciduous forest in northwest Ohio, U.S.A. A total of eight aluminum enclosures, each containing a single P. cinereus under a small log, were constructed in the deciduous forest. On Day 1 of the experiment, four salamanders were evicted from four of the eight enclosures. Organic matter and soil were collected from the center of each enclosure at Day 1 and Day 21. From each sample, DNA was extracted, fungal‐specific amplification performed, and 454 pyrosequencing was used to sequence the nuclear ribosomal internal transcribed spacer (ITS2) region and partial ribosomal large subunit (LSU). Changes in overall fungal community composition or species diversity were not statistically significant between treatments. Statistically significant shifts in the most abundant taxonomic groups of fungi were documented in presence but not absence enclosures. We concluded that P. cinereus does not affect the overall composition or diversity of fungal communities, but does have an impact on specific groups of fungi. This study used a metagenomics‐based approach to investigate a missing link among a keystone predator, P. cinereus, invertebrates, and fungal communities, all of which are critical in the detritivore food web.  相似文献   

18.
Courtship in plethodontid salamanders includes the delivery of male courtship pheromones by two distinct modes. Within the eastern Plethodon clade of the tribe Plethodontini, members of the Plethodon cinereus species group use an ancestral ‘vaccination’ mode of delivery, while members of the P. glutinosus group use an olfactory delivery mode. In order to shed light on this transition in delivery mode, I observed courtship behavior in P. dorsalis, a species that is phylogenetically intermediate to the P. cinereus and P. glutinosus groups. My observations indicate that P. dorsalis also is intermediate to the P. cinereus and P. glutinosus species groups in terms of courtship behavior. The context of delivery of male courtship pheromones in P. dorsalis is similar to that of the P. cinereus species group; however, the mode of pheromone delivery in P. dorsalis is olfactory. Thus, a transition in the context of pheromone delivery underlies the more obvious change in pheromone delivery mode. I discuss these findings in terms of the evolution of courtship pheromone delivery across the eastern Plethodon clade. I also report the first observations of ‘premature’ spermatophore deposition by male plethodontids.  相似文献   

19.
Aim To examine patterns in anuran species richness along an elevation gradient and identify factors that govern anuran species richness on a tropical elevational gradient. Location Sampling for anurans was carried out in Kalakad Mundanthurai Tiger Reserve (KMTR) in the southern Western Ghats, India. Methods Night‐time sampling for anuran species richness was carried out from 20 November 2004 to 20 April 2005, during the north‐east monsoon and dry seasons, using transects (50 × 2 m) and visual encounter surveys along the streams. The entire gradient was classified into thirteen 100‐m elevation zones. Sampling at the alpha (single drainage basin) level was carried out in the Chinnapul River drainage basin (40–1260 m a.s.l.) and at the gamma (landscape) level in four drainage basins. Additionally, published records were used to arrive at an empirical species richness (S) for the entire landscape. Mid‐Domain Null software was used to test for the possible influence of geometric constraints on anuran species at both the alpha and gamma levels. The influence of area under each elevation zone on empirical S was tested. The pattern in anuran species richness along the elevational gradient was investigated using: (1) species boundaries in each elevation zone and their habitat correlates, (2) abiotic factors as predictor variables, (3) mean snout vent lengths of anurans, and (4) correlation between the matrices of distance in the elevation zones based on microhabitat parameters and species composition. Cluster analysis on species presence–absence in the elevation zones was used to categorize the entire gradient into high, middle and low elevations. In these three elevation categories, pattern in composition of species was examined for endemism in Western Ghats–Sri Lanka biodiversity hotspot, uniqueness to an elevation zone, adaptations of adults and modes of breeding. Results Species richness at the alpha level increased linearly with elevation, while at the gamma level there were three peaks. Maximum species richness was observed at the highest elevation (1200 m) at both the alpha and the gamma levels. The observed patterns differed significantly from mid‐domain null predictions. The multi‐modal pattern in species richness was a consequence of overlapping species range boundaries. Soil temperature was the best single measure in explaining the majority of variation in species richness at the alpha level (r2 = 0.846, P < 0.01). However, soil moisture was the best predictor when both the alpha and the gamma sites were pooled (r2 = 0.774, P < 0.01). Anuran body size decreased with an increase in elevation. The highest proportions of endemic and unique species were found at high elevations (> 700 m). The proportion of arboreal anurans increased from low to high elevation. Anurans exhibiting direct development were predominantly found at high elevations. Main conclusions Geometric constraints did not influence anuran species richness along the elevational gradient. Overlapping range boundaries influenced species richness at the gamma level. Abiotic factors such as soil temperature and moisture influenced anuran species richness in the mountain range. The ‘Massenerhebung effect’ could be responsible for range restriction and endemism of anurans, differences in guilds and mode of reproduction. These findings highlight the importance of cloud forests for endemic anurans.  相似文献   

20.
North American Papilio canadensis and P. glaucus (Lepidoptera: Papilionidae, these Papilio = Pterourus) have previously been described as having allopatric distributions separated by a narrow hybrid zone running from Minnesota to southern New England, and southward in the Appalachian Mountains (possibly to northern Georgia). Recent patterns of hybridization and introgression suggest a more complex interaction between the two, possibly even resulting in the formation of a new species (Pterourus appalachiensis Pavulaan & Wright, 2002). Recently, extensive northward interspecific introgression of P. glaucus‐diagnostic traits has been observed in the hybrid zone. These include wing bands and other color patterns, the ability to feed on tulip tree leaves, and Hk‐100 allozymes; all are autosomally encoded. However, there has been little northward introgression of certain other P. glaucus traits (such as facultative diapause and bivoltinism, and Ldh‐100 allozymes, both X‐linked; and the Y‐linked melanic mimicry gene in females). Interspecific recombination of the X‐chromosome has evidently occurred, as shown by discordant patterns of X‐linked markers. The P. glaucus X‐linked Pgd‐100 and Pgd‐50 alleles have introgressed 200–400 km north of the historical hybrid zone, yet the P. glaucus X‐linked Ldh‐100 allele has not. The allele frequency shift for both genes is more closely related to the ‘thermal landscape’ (i.e., accumulated degree‐days above a developmental base threshold of 50 °F (=10 °C)) than to latitude. Delayed post‐diapause eclosion of cohorts within the hybrid zone, e.g., the New York/Vermont border area, has produced a natural ‘false‐second generation’ flight (a hybrid swarm of synchronous males and females, where 2300–2700 °F degree‐days have accumulated each year since 1998) that is reproductively isolated from flights of both parental species. Moreover, the newly described P. appalachiensis exhibits a unique combination of traits. These include obligate diapause, a univoltine habit, and the Ldh‐80 or Ldh‐40 alleles (as for P. canadensis), the Pgd‐100 or Pgd‐50 alleles (as for P. glaucus), and a delayed ‘false‐second generation’ reproductive flight period (as observed in the hybrid zone). Since 2001, a rare allele or ‘hybrizyme’ (Ldh‐20) has appeared in this false second generation at high frequencies (40–50%). We hypothesize that strong selection against the facultative diapause (od‐)trait (and the linked Ldh‐100 allele) in regions with 2800 °F degree‐days or less, and divergent selection in favor of Pgd‐100 (or a closely linked trait) combined with allochronic reproductive isolation, has resulted in recombinational, parapatric, hybrid speciation. There is no evidence at present that host‐plant shifts or changes in sex pheromones have driven this process, in contrast to many other speciation events in the Lepidoptera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号