首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The structure and function of several C1 alleles have been investigated molecularly and the importance of C1 promoter sequences for gene expression was studied using transient transformation assays. The C1 mutants analyzed were the overexpressing allele C1-S, the light-inducible allele c1-p, the null recessive allele c1-n, and the Ds element-induced allele c1-m1. Nucleotide sequence analysis of the alleles revealed a number of differences, predominantly located at the 3 end of the gene. The promoter sequences of the C1 alleles investigated so far (including wild-type and the dominant inhibitor C1-I allele) are almost identical except for two short footprint-like sequences (Box I and Box 11) close to the putative CAAT box. Northern blot experiments and transient expression in particle gun experiments indicate that these sequences may be correlated with the different expression patterns of the alleles in the aleurone of maturing and germinating kernels.  相似文献   

4.
The viviparous-1 (vp1) locus in maize is a developmental gene that controls diverse aspects of the maturation phase of seed development. Mutations of vp1 alter embryo sensitivity to the hormone abscisic acid and block formation of anthocyanin pigment. Molecular cloning of a Robertson Mutator-induced mutant allele, vp1-mum-1, by transposable element tagging has allowed analysis of several transposon-induced vp1 mutants. In the vp1-Mc mutation, the gene is disrupted by 4.0 kbp insertion, which results in expression of a 3′ truncated mRNA. Phenotypically, this allele is at least partially functional in causing embryo dormancy, but is ineffective in controlling anthocyanin expression. This result suggests that disruption of the C-terminal domain of the Vp1 protein specifically affects regulation of the anthocyanin pathway. A second Mutator- derived allele, vp1-mum2, exhibits an unusual form of somatic mutability in which endosperm cells revert from wild-type vp1 expression to a mutant condition. The vp1-mum2 allele contains a 1.5 kbp Insertion that has no detectable homology to known Mu elements. This element is retained In wild-type germinal revertants derived from vp1-mum2 An apparent DNA modification affecting cleavage at an internal Sstl restriction site in the element correlates with vp1-mum2 states that exhibit wild-type Vp1 expression. A model involving mitotic assortment of modified and unmodified DNA strands during development is proposed for vp1-mum2 somatic mutation.  相似文献   

5.
We previously identified a 0.7 Kb cDNA fragment of Zm401, a novel pollen-specific gene in maize (Zea mays). However, little information is known about the function of Zm401 in pollen development. The full-length of Zm401 cDNA was amplified by 5′ RACE and 3′ RACE and both sequence analysis and in vitro translation of Zm401 showed that it belonged to an mRNA-like non-coding gene. To analyze its possible biological roles in pollen development, the Zm401 cDNA was overexpressed in transgenic maize under the control of a pollen specific promoter Zm13 or a CaMV 35S promoter. RT-PCR and RNA gel blot analysis indicated that the expression level of Zm401 in leaves and anthers of transgenic plants was much higher than that of non-transformants. Compared with the non-transformed maize, transgenic maize showed distinct phenotypes, such as abnormal tassels and degenerate anthers. The histological observation showed that the development of pollen grains and anthers in transgenic plants were abnormal. These abnormalities include delayed degradation of tapetum, asynchronous fusion of pollen sacs, and aborted pollen grain development. Furthermore, the pollen viability in six transgenic plants ranged from 1.24% to 6.63%. The reduced pollen viability cosegregated with the transgene in a selfed progeny. These results suggest that Zm401 is involved in the regulation of pollen development. This article demonstrated Zm401, as a non-coding RNA, plays an essential role in pollen development. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The structure and function of several C1 alleles have been investigated molecularly and the importance of C1 promoter sequences for gene expression was studied using transient transformation assays. The C1 mutants analyzed were the overexpressing allele C1-S, the light-inducible allele c1-p, the null recessive allele c1-n, and the Ds element-induced allele c1-m1. Nucleotide sequence analysis of the alleles revealed a number of differences, predominantly located at the 3′ end of the gene. The promoter sequences of the C1 alleles investigated so far (including wild-type and the dominant inhibitor C1-I allele) are almost identical except for two short footprint-like sequences (Box I and Box 11) close to the putative CAAT box. Northern blot experiments and transient expression in particle gun experiments indicate that these sequences may be correlated with the different expression patterns of the alleles in the aleurone of maturing and germinating kernels.  相似文献   

7.
Expression of CDC2Zm and KNOTTED1 (KN1) in maize (Zea mays L.) and their cross-reacting proteins in barley (Hordeum vulgare L.) was studied using immunolocalization during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation. Expression of CDC2Zm, a protein involved in cell division, roughly correlated with in-vitro cell proliferation and in the meristematic domes CDC2Zm expression was triggered during in-vitro proliferation. Analysis of the expression of KN1, a protein necessary for maintenance of the shoot meristem, showed that KN1 or KN1-homologue(s) expression was retained in meristematic cells during in-vitro proliferation of axillary shoot meristems. Multiple adventitious shoot meristems appeared to form directly from the KN1- or KN1 homologue(s)-expressing meristematic cells in the in-vitro proliferating meristematic domes. However, unlike Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) leaves ectopically expressing KN1 (G. Chuck et al., 1996 Plant Cell 8: 1277–1289; N. Sinha et al., 1993 Genes Dev. 7: 787–797), transgenic maize leaves over-expressing KN1 were unable to initiate adventitious shoot meristems on their surfaces either in planta or in vitro. Therefore, expression of KN1 is not the sole triggering factor responsible for inducing adventitious shoot meristem formation from in-vitro proliferating axillary shoot meristems in maize. Our results show that genes critical to cell division and plant development have utility in defining in-vitro plant morphogenesis at the molecular level and, in combination with transformation technologies, will be powerful tools in identifying the fundamental molecular and-or genetic triggering factor(s) responsible for reprogramming of plant cells during plant morphogenesis in-vitro. Received: 2 June 1997 / Accepted: 21 July 1997  相似文献   

8.
Summary cDNA clones were isolated from tissue specific cDNA libraries of barley and maize using as a probe the cDNA of the maize gene C1, a regulator of anthocyanin gene expression. C1-related homology for all of the four cDNAs characterized by sequence analysis is restricted to the N-terminal 120 amino acids of the putative proteins. This region shows striking homology to the N-proximal domain of the myb oncoproteins from vertebrates and invertebrates. Within the myb proto-oncogene family this part of the respective gene products functions as a DNA binding domain. Acidic domains are present in the C-proximal protein segments. Conservation of these sequences, together with the genetically defined regulator function of the C1 gene product, suggest that myb-related plant genes code for trans-acting factors which regulate gene expression in a given biosynthetic pathway.  相似文献   

9.
10.
11.
The EcoRI chromosomal fragment (6782 bp) containing the lux operon of Photorhabdus luminescens was cloned in pUC18 and completely sequenced. Enteric repetitive intergenic consensus (ERIC), an imperfect palindrome (125–127 bp) characteristic of Enterobacteriaceae genomes, was found in three sites. Strain Zm1 proved to differ in the ERIC number and location from strains Hb, Hm, and Hw. Nucleotide substitution analysis showed that luxC and luxB, which are more than 1 kb away from ERIC, are similar to the corresponding Hb genes, whereas luxD, luxA, and luxE, which are close to ERIC, are intermediate between their Hb and Hw counterparts. The Hb/Hw nucleotide substitution ratio was 1:1 in regions adjacent to ERIC. Hence ERIC can be thought to be recombination hot spots in the bacterial genome.  相似文献   

12.
13.
A chromosomal fragment of bacteria Photorhabdus luminescence Zm1, which contains the lux operon, was cloned into the vector pUC18. The hybrid clone containing plasmid pXen7 with the EcoRI fragment approximately 7-kb was shown to manifest a high level of bioluminescence. By subcloning and restriction analysis of the EcoRI fragment, the location of luxCDABE genes relative to restriction sites was determined. The nucleotide sequence of the DNA fragment containing the luxA and luxB genes encoding alpha- and beta-subunits of luciferase was determined. A comparison with the nucleotide sequences of luxAB genes in Hm and Hw strains of Ph. luminescence revealed 94.5 and 89.7% homology, respectively. The enterobacterial repetitive intergenic sequence (ERIC) of 126 bp typical for Hw strains was identified in the spacer between the luxD and luxA genes. The lux operon of Zm1 is assumed to emerge through recombination between Hm and Hw strains. Luciferase of Ph. luminescence was shown to possess a high thermal stability: its activity decreased by a factor of 10 at 44 degrees C for 30 min, whereas luciferases of marine bacteria Vibrio fischeri and Vibrio harveyi were inactivated by one order of magnitude at 44 degrees C for 1 and 6 min, respectively. The lux genes of Ph. luminescence are suggested for use in gene engineering and biotechnology.  相似文献   

14.
15.
16.
17.
18.
Shi MZ  Xie DY 《Planta》2011,233(4):787-805
We report metabolic engineering of Arabidopsis red cells and genome-wide gene expression analysis associated with anthocyanin biosynthesis and other metabolic pathways between red cells and wild-type (WT) cells. Red cells of A. thaliana were engineered for the first time from the leaves of production of anthocyanin pigment 1-Dominant (pap1-D). These red cells produced seven anthocyanin molecules including a new one that was characterized by LC–MS analysis. Wild-type cells established as a control did not produce anthocyanins. A genome-wide microarray analysis revealed that nearly 66 and 65% of genes in the genome were expressed in the red cells and wild-type cells, respectively. In comparison with the WT cells, 3.2% of expressed genes in the red cells were differentially expressed. The expression levels of 14 genes involved in the biosynthetic pathway of anthocyanin were significantly higher in the red cells than in the WT cells. Microarray and RT-PCR analyses demonstrated that the TTG1–GL3/TT8–PAP1 complex regulated the biosynthesis of anthocyanins. Furthermore, most of the genes with significant differential expression levels in the red cells versus the WT cells were characterized with diverse biochemical functions, many of which were mapped to different metabolic pathways (e.g., ribosomal protein biosynthesis, photosynthesis, glycolysis, glyoxylate metabolism, and plant secondary metabolisms) or organelles (e.g., chloroplast). We suggest that the difference in gene expression profiles between the two cell lines likely results from cell types, the overexpression of PAP1, and the high metabolic flux toward anthocyanins.  相似文献   

19.
肉桂酸-4-羟化酶(Cinnamic acid-4-hydroxylase,C4H,EC 1.14.13.11)是苯丙烷途径中第二步反应酶,同时也是花色素苷前体生物合成途径中关键酶。该研究根据植物C4H的同源序列设计引物,通过RTPCR结合RACE的方法,在紫色甘薯中获得了与其相应的C4H基因,命名为Ib C4H(Gen Bank登录号GQ373157)。结果表明:(1)序列分析表明Ib C4H长1 668 bp,编码505个氨基酸,该氨基酸序列与其c DNA序列与Ib C4H蛋白与马铃薯C4H蛋白序列最为接近,与苹果、黑莓、大阿米芹、油菜一致性很高,均在70%以上。(2)二级结构预测表明α-螺旋和无规则卷曲是Ib C4H蛋白最大量的结构元件,而延伸链则散布于整个蛋白中。(3)三维结构建模预测,Ib C4H蛋白具备细胞色素P450氧和铁离子结合位点等典型的C4H结构。该研究结果为进一步了解花色素苷生物合成途径中的作用奠定了基础,也为花青素生物合成分子机理和代谢调控提供了靶位点和理论参考。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号