首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prediction and control of bone drilling forces are critical to the success of many orthopaedic operations. Uncontrolled and large forces can cause drill-bit breakage, drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a mechanistic model for prediction of thrust forces and torques experienced during bone drilling. The model incorporates the radially varying drill-bit geometry and cutting conditions analytically, while capturing the material and friction properties empirically through a specific energy formulation. The forces from the chisel edge are modeled by considering the indentation process that occurs in the vicinity of the drill-bit axis. A procedure is outlined to calibrate the specific energies, where only a small number of calibration experiments are required for a wide range of drilling conditions and drill-bit geometry. The calibration parameters for the cortical portions of bovine tibia are identified through drilling tests. Subsequently, a series of validation tests are conducted under different feed rates and spindle speeds. The thrust forces and torques were observed to vary considerably between bones from different animals. The forces from the model were seen to match well with those from the experimentation within the inherent variations from the bone characteristics. The model can be used to select favorable drilling conditions, to assist in robotic surgeries, and to design optimal orthopaedic drill bits.  相似文献   

2.
To date, analysis of temperature in the drill area of cortical bone have been limited to measurements with thermocouple systems at a certain distance from the drill hole. Many authors equate this temperature measurement with the drill--cortical bone interface temperature. In order show that there is a temperature difference, a drill hole was simulated with the aid of the "Finite Element Method". The interface temperature was calculated by the energy distribution. It was shown, that for "dry" and "watercooled" drilling, the drill hole temperature was 13 degrees C higher than the temperature measured with the thermocouple systems at a distance 0.5 mm of from the drill hole. In particular when using "watercooled" drills for bone and dental surgery, the temperature may be higher than the bone damage limit of 44 degrees C for lengthy and 50 degrees C for brief drilling.  相似文献   

3.
A finite element technique was developed to investigate the thermal behavior of bone cement in joint replacement procedures. Thermal tests were designed and performed to provide the parameters in a kinetic model of bone cement exothermic polymerization. The kinetic model was then coupled with an energy balance equation using a finite element formulation to predict the temperature history and polymerization development in the bone-cement-prosthesis system. Based on the temperature history, the possibility of the thermal bone necrosis was then evaluated. As a demonstration, the effect of cement mantle thickness on the thermal behavior of the system was investigated. The temperature profiles in the bone-cement-prosthesis system have shown that the thicker the cement, the higher the peak temperature in the bone. In the 7 mm thick cement case, a peak temperature of over 55 degrees C was predicted. These high temperatures occurred in a small region near the bone/cement interface. No damage was predicted in the 3 mm and 5 mm cement mantle thickness cases. Although thermal damage was predicted in the bone for the 7 mm mantle thickness case, the amount of thermal necrosis predicted was minimal. If more cement is used in the surgical procedure, more heat will be generated and the potential for thermal bone damage may rise. The systems should be carefully selected to reduce thermal tissue damage when more cement is used. The methodology developed in this paper provides a numerical tool for the quantitative simulation of the thermal behavior of bone-cement-prosthesis designs.  相似文献   

4.
Heat generation during orthopaedic bone cutting operations may cause thermal bone damage. During the bone cutting, the maximum temperature occurs at the point of contact between the bone and the cutting tool. However, this temperature is difficult to measure. Many researchers have attempted to measure this temperature using a thermocouple; however, limitations of the thermocouple makes it difficult to determine the maximum temperature at the point of contact. In order to solve this problem, in this study, two infrared thermometers are used to measure the fresh-milled surface temperature, and the maximum temperature was extrapolated by a moving plane heat source solution. The estimated maximum temperature increment varied from 49 to 115 degrees C under various cutting conditions. These results showed that the thermal damage may reach up to 1.9 mm in depth during round bur milling. A larger feed rate and a smaller cutting depth decreased the maximum temperature.  相似文献   

5.
The thermal limitations inherent with the use of invasive thermistor probes in the measurement of thermal properties of biomaterials have been investigated. An electronic temperature controller has been developed which provides a nearly instantaneous step rise in average probe resistance (temperature). The method of experimentally determining the heat rate required to maintain the average probe temperature constant and incorporation of that heat rate into the general heat diffusion equation provides a solution which allows the determination of both thermal conductivity and diffusivity values with improved accuracy. The method is general to all media which wet the surface of the probe; the need for calibrating media is avoided. The solution also predicts the minimum required sample size.  相似文献   

6.
A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends.  相似文献   

7.
Thermal performance curves (TPCs) compute the effects of temperature on the performance of ectotherms and are frequently used to predict the effect of environmental conditions and currently, climate change, on organismal vulnerability and sensitivity. Using Drosophila melanogaster as an animal model, we examined how different thermal environments affected the shape of the performance curve and their parameters. We measured the climbing speed as a measure of locomotor performance in adult flies and tested the ontogenetic and transgenerational effects of thermal environment on TPC shape. Parents and offspring were reared at 28 ± 0ºC (28C), 28 ± 4ºC (28V), and 30 ± 0ºC (30C). We found that both, environmental thermal variability (28V) and high temperature (30C) experienced during early ontogeny shaped the fruit fly TPC sensitivity. Flies reared at variable thermal environments shifted the TPC to the right and increased heat tolerance. Flies held at high and constant temperature exhibited lower maximum performance than flies reared at the variable thermal environment. Furthermore, these effects were extended to the next generation. The parental thermal environment had a significative effect on TPC and its parameters. Indeed, flies reared at 28V whose parents were held at a high and constant temperature (30C) had a lower heat tolerance than F1 of flies reared at 28C or 28V. Also, offspring of flies reared at variable thermal environment (28V) reached the maximum performance at a higher temperature than offspring of flies reared at 28C or 30C. Consequently, since TPC parameters are not fixed, we suggest cautiousness when using TPCs to predict the impact of climate change on natural populations.  相似文献   

8.
Jeunghwan Choi 《Cryobiology》2010,60(1):52-2221
It is well accepted in cryobiology that the temperature history and cooling rates experienced in biomaterials during freezing procedures correlate strongly with biological outcome. Therefore, heat transfer measurement and prediction in the cryogenic regime is central to the field. Although direct measurement of temperature history (i.e. heat transfer) can be performed, accuracy is usually achieved only for local measurements within a given system and cannot be readily generalized to another system without the aid of predictive models. The accuracy of these models rely upon thermal properties which are known to be highly dependent on temperature, and in the case of significant cryoprotectant loading, also on crystallized fraction. In this work, we review the available thermal properties of biomaterials in the cryogenic regime. The review shows a lack of properties for many biomaterials in the subzero temperature domain, and especially for systems with cryoprotective agents. Unfortunately, use of values from the limited data available (usually only down to −40 °C) lead to an underestimation of thermal property change (i.e. conductivity rise and specific heat drop due to ice crystallization) with lower temperatures. Conversely, use of surrogate values based solely on ice thermal properties lead to an overestimation of thermal property change for most biomaterials. Additionally, recent work extending the range of available thermal properties to −150 °C has shown that the thermal conductivity will drop in both PBS and tissue (liver) due to amorphous/glassy phases (versus crystalline) of biomaterials with the addition of cryoprotective additives such as glycerol. Thus, we investigated the implications of using approximated or constant property values versus measured temperature-dependent values for predicting temperature history during freezing in PBS (phosphate-buffered saline) and porcine liver with and without cryoprotectants (glycerol). Using measured property values (thermal conductivity, specific heat, and latent heat of phase change) of porcine liver, a standard was created which showed that values based on surrogate ice properties under-predicted cooling times, while constant properties (i.e. based on limited data reported near the freezing point) over-predicted cooling times. Additionally, a new iterative numerical method that accommodates non-equilibrium cooling effects as a function of time and position (i.e. crystallization versus amorphous phase) was used to predict temperature history during freezing in glycerol loaded systems. Results indicate that in addition to the increase in cooling times due to the lowering of thermal diffusivity with more glycerol, non-equilibrium effects such as the prevention of maximal crystallization (i.e. amorphous phases) will further increase required cooling times. It was also found that the amplified effect of non-equilibrium cooling and crystallization with system size prevents the thermal history to be described with non-dimensional lengths, such as was possible under equilibrium cooling. These results affirm the need to use accurate thermal properties that incorporate temperature dependence and crystallized fraction. Further studies are needed to extract thermal properties of other important biomaterials in the subzero temperature domain and to develop accurate numerical methods which take into account non-equilibrium cooling events encountered in cryobiology when partial or total vitrification occurs.  相似文献   

9.
Thermal therapy of benign prostatic hyperplasia requires accurate prediction of the temperature distribution induced by the heating within the prostatic tissue. In this study, the Pennes bioheat transfer equation was used to model the transient heat transfer inside the canine prostate during transurethral microwave thermal therapy. Incorporating the specific absorption rate of microwave energy in tissue, a closed-form analytical solution was obtained. Good agreement was found between the theoretical predictions and in-vivo experimental results. Effects of blood perfusion and the cooling at the urethral wall on the temperature rise were investigated within the prostate during heating. The peak intraprostatic temperatures attained by application of 5, 10, or 15 W microwave power were predicted to be 38 degrees C, 41 degrees C, and 44 degrees C. Results from this study will help optimize the thermal dose that can be applied to target tissue during the therapy.  相似文献   

10.
The advent of haptic simulation systems for orthopaedic surgery procedures has provided surgeons with an excellent tool for training and preoperative planning purposes. This is especially true for procedures involving the drilling of bone, which require a great amount of adroitness and experience due to difficulties arising from vibration and drill bit breakage. One of the potential difficulties with the drilling of bone is the lack of consistent material evacuation from the drill's flutes as the material tends to clog. This clogging leads to significant increases in force and torque experienced by the surgeon. Clogging was observed for feed rates greater than 0.5 mm/s and spindle speeds less than 2500 rpm. The drilling simulation systems that have been created to date do not address the issue of drill flute clogging. This paper presents force and torque prediction models that account for this phenomenon. The two coefficients of friction required by these models were determined via a set of calibration experiments. The accuracy of both models was evaluated by an additional set of validation experiments resulting in average R2 regression correlation values of 0.9546 and 0.9209 for the force and torque prediction models, respectively. The resulting models can be adopted by haptic simulation systems to provide a more realistic tactile output.  相似文献   

11.
During heavy sustained exercise, when sweating is usually needed to dissipate the extra metabolic heat, controlled cooling caused heat loss to match total heat production with little sweating. The total heat produced and metabolic rate were varied independently by having subjects walk uphill and down. Heat loss was measured directly with a suit calorimeter; other measurements included metabolic energy from respiratory gas exchange and body temperatures. Thermoregulatory sweating was minimized by adjusting cooling in the calorimeter suit. Heat loss rose to match total heat, not metabolic rate, and there was a slow rise in rectal temperature. In the absence of major thermoregulatory response rectal temperature correlated most closely with total heat; it also correlated with the relative oxygen cost of exercise. Heat flow or heat content appeared to be the controlled variable and body temperature rise a secondary event resulting from thermal transport lag.  相似文献   

12.
Determination of temperature dependencies of electric conductivity and thermal properties by differential scanning calorimetry (DSC) allow to analyse the processes of charge and heat transport in the bone being a complex collagen-hydroxyapatite (HAP)-water system. Modification of the bone structure by high doses of gamma-radiation changes the electrical and thermal properties of the bone. Electrical conductivity (sigma) of the bone decreases with consecutive heating runs. The decrease in sigma observed for irradiated samples was explained by the scission of the main chain of collagen macromolecule. Irradiation decreased the hydration level in the bone, its denaturation temperature and increased both enthalpy and entropy of the denaturation process.  相似文献   

13.
颅骨自动钻孔技术探析   总被引:2,自引:0,他引:2  
头骨钻孔为脑部微创手术的重要步骤,现有钻孔设备多采朋手动方式,钻孔设备没有任何判断钻穿的装置,钻穿骨头后停止钻进完全靠医生的经验来实现。介绍了国内外该领域的研究现状与存在问题,提出了一种颅骨钻穿自动停刀的判断方法,提出了颅骨自动钻孔技术未来发展的趋势。  相似文献   

14.
Electrical injury mechanisms: dynamics of the thermal response   总被引:1,自引:0,他引:1  
The thermal response of the human upper extremity to large electric currents was examined using an axisymmetric unidimensional model containing bone, skeletal muscle, fat, and skin in coaxial cylindrical geometry. Appropriate thermal and electrical properties were assigned to each tissue, and the tissue response to joule heating was determined by a finite-element numerical technique. We found that when the tissues are electrically in parallel, skeletal muscle sustained the largest temperature rise and then heated adjacent tissues. Thus, when bone is not in series with other tissues, joule heating of bone is unlikely to be responsible for thermal damage to adjacent tissue. In addition, the effect of tissue perfusion on the thermal response was found to be essential for rapid cooling of the centrally located tissues.  相似文献   

15.
Twelve women, who differed in physical condition and body size, were heat acclimated utilizing either a daily or intermittent (every 3rd day) exposure pattern in an environmental chamber. The women walked for 100 min at 5.2 km/h up a 2.5% grade on a motor-driven treadmill Climatic chamber conditions were 46.5°C Ta, 24.5°C Twb ± 0.5°C. Although individual acclimation varied, significant reduction in heat strain was observed in all subjects, e.g., the ability to complete the assigned task with increasing ease, a decrease in working heart rate, a decrease in rectal temperature rise, a decrease in mean skin temperature, an increase in sweat rate, an increase in evaporative rate, and a decrease in heat storage. The pattern of heat exposures, daily or every third day, had no discernible effect on the rate of heat acclimation. The highly conditioned subjects showed less physiological strain, particularly during the first few heat exposures, and maintained some relative advantage throughout the series of 10 exposures. Body size, in the range studied, appeared to exert little influence on the amount of thermal strain.  相似文献   

16.
This paper proposed a multi-node human thermal model to predict human thermal responses in hot environments. The model was extended based on the Tanabe's work by considering the effects of high temperature on heat production, blood flow rate, and heat exchange coefficients. Five healthy men dressed in shorts were exposed in thermal neutral (29 °C) and high temperature (45 °C) environments. The rectal temperatures and skin temperatures of seven human body segments were continuously measured during the experiment. Validation of this model was conducted with experimental data. The results showed that the current model could accurately predict the skin and core temperatures in terms of the tendency and absolute values. In the human body segments expect calf and trunk, the temperature differences between the experimental data and the predicted results in high temperature environment were smaller than those in the thermally neutral environment conditions. The extended model was proved to be capable of predicting accurately human physiological responses in hot environments.  相似文献   

17.
A microcomputer based instrument to measure effective thermal conductivity and diffusivity at the surface of a tissue has been developed. Self-heated spherical thermistors, partially embedded in an insulator, are used to simultaneously heat tissue and measure the resulting temperature rise. The temperature increase of the thermistor for a given applied power is a function of the combined thermal properties of the insulator, the thermistor, and the tissue. Once the probe is calibrated, the instrument accurately measures the thermal properties of tissue. Conductivity measurements are accurate to 2 percent and diffusivity measurements are accurate to 4 percent. A simplified bioheat equation is used which assumes the effective tissue thermal conductivity is a linear function of perfusion. Since tissue blood flow strongly affects heat transfer, the surface thermistor probe is quite sensitive to perfusion.  相似文献   

18.

Background

A neuronavigation interface with extended function as compared with current systems was developed to aid during temporal bone surgery. The interface, named EVADE, updates the prior anatomical image and visualizes the bone drilling process virtually in real-time without need for intra-operative imaging. Furthermore, EVADE continuously calculates the distance from the drill tip to segmented temporal bone critical structures (e.g. the sigmoid sinus and facial nerve) and produces audiovisual warnings if the surgeon drills in too close vicinity. The aim of this study was to evaluate the accuracy and surgical utility of EVADE in physical phantoms.

Methodology/Principal Findings

We performed 228 measurements assessing the position accuracy of tracking a navigated drill in the operating theatre. A mean target registration error of 1.33±0.61 mm with a maximum error of 3.04 mm was found. Five neurosurgeons each drilled two temporal bone phantoms, once using EVADE, and once using a standard neuronavigation interface. While using standard neuronavigation the surgeons damaged three modeled temporal bone critical structures. No structure was hit by surgeons utilizing EVADE. Surgeons felt better orientated and thought they had improved tumor exposure with EVADE. Furthermore, we compared the distances between surface meshes of the virtual drill cavities created by EVADE to actual drill cavities: average maximum errors of 2.54±0.49 mm and −2.70±0.48 mm were found.

Conclusions/Significance

These results demonstrate that EVADE gives accurate feedback which reduces risks of harming modeled critical structures compared to a standard neuronavigation interface during temporal bone phantom drilling.  相似文献   

19.
Heat stress is one of the major limiting factors of production efficiency in the swine industry. The aims of the present study were 1) to observe if hemorheological and hematological parameters could be associated to physiological acclimation during the first days of heat stress exposure and 2) to determine if water restriction could modulate the effect of thermal heat stress on physiological, hematological and hemorheological parameters. Twelve Large White male pigs were divided into an ad libitum and a water restricted group. All pigs were submitted to one week at 24°C (D-7 to D-1). Then, at D0, temperature was progressively increased until 32°C and maintained during one week (D1 to D7). We performed daily measurements of water and feed intake. Physiological (i.e., skin temperature, rectal temperature, respiratory rate), hematological and hemorheological parameters were measured on D-6, D-5, D0, D1, D2 and D7. Water restriction had no effect on physiological, hematological and hemorheological parameters. The first days of heat stress caused an increase in the three physiological parameters followed by a reduction of these parameters suggesting a successful acclimation of pigs to heat stress. We showed an increase in hematocrit, red blood cell aggregation and red blood cell aggregation strength during heat stress. Further, we observed an important release of reticulocytes, an increase of red blood cell deformability and a reduction of feed intake and blood viscosity under heat stress. This study suggests that physiological acute adaptation to heat stress is accompanied by large hematological and hemorheological changes.  相似文献   

20.

Details about the procedures for drilling a ca. 150 m long drill core in a terrestrial setting under contamination controlled conditions are presented. Different to previous studies we only used commercially available drilling equipment to reduce the cost of operation significantly. The goals were (1) to minimize, (2) to monitor and, if possible, to quantify the contamination of the recovered sediments, and (3) to identify the different sources of contamination. Both the potential contamination of the sample material by surface microorganisms and non-indigenous material was assessed. To estimate the infiltration of drill mud into the core, fluorescent microspheres, having about half the size as microorganisms, were added to the mud. The drilling technique used was mud rotary drilling. With the exception of the very beginning of the drilling operations, the drill mud was devoid of any allochthonous hydrocarbons potentially derived from the drilling equipment or drill additives, and its biomarker composition reflected the varying organo-facies that were penetrated. Due to the lack of allochthonous hydrocarbons in the drill mud, its infiltration into the sediment cannot be traced by organic geochemical biomarker analysis. Microspheres proved to be a sensitive tool for the assessment of infiltration of drill mud into the core. The concentration of microspheres in the drill mud decreased continuously during the drilling, most probably caused by seepage of mud through leaks and attachment of spheres to the surface scum in the mud pit. Microscopic enumeration of the microspheres showed great variability in the depth of penetration of mud into the core, apparently unaffected of lithology. The sampling of the core material in the laboratory was carried out inside an anaerobic chamber. Several techniques for subsampling were used, according to sediment properties. The overall results indicate that, if strict contamination control protocols are employed, it is possible to recover uncontaminated samples at reasonable cost with commercially available drilling equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号