首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The approximately 14 kb mRNA of the polycystic kidney disease gene PKD1 encodes a large ( approximately 460 kDa) protein, termed polycystin-1 (PC-1), that is responsible for autosomal dominant polycystic kidney disease (ADPKD). The unique organization of its multiple adhesive domains (16 Ig-like domains/PKD domains) suggests that it may play an important role in cell-cell/cell-matrix interactions. Here we demonstrated that PKD1 promoted cell-cell and cell-matrix interactions in cancer cells, indicating that PC-1 is involved in the cell adhesion process. Furthermore in this study, we showed that PKD1 inhibited cancer cells migration and invasion. And we also showed that PC-1 regulated these processes in a process that may be at least partially through the Wnt pathway. Collectively, our data suggest that PKD1 may act as a novel member of the tumor suppressor family of genes.  相似文献   

3.
The PKD1 gene accounts for 85% of autosomal dominant polycystic kidney disease (ADPKD), the most common human genetic disorder. Rats with a germline inactivation of one allele of the Tsc2 tumor suppressor gene developed early onset severe bilateral polycystic kidney disease, with similarities to the human contiguous gene syndrome caused by germline codeletion of PKD1 and TSC2 genes. Polycystic rat renal cells retained two normal Pkd1 alleles but were null for Tsc2 and exhibited loss of lateral membrane-localized polycystin-1. In tuberin-deficient cells, intracellular trafficking of polycystin-1 was disrupted, resulting in sequestration of polycystin-1 within the Golgi and reexpression of Tsc2 restored correct polycystin-1 membrane localization. These data identify tuberin as a determinant of polycystin-1 functional localization and, potentially, ADPKD severity.  相似文献   

4.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and affects up to 12 million people worldwide. Germline mutations in two genes, PKD1 or PKD2, account for almost all patients with ADPKD. The ADPKD proteins, polycystin-1 (PC1) and polycystin-2 (PC2), are regulated by post-translational modifications (PTM), with phosphorylation, glycosylation and proteolytic cleavage being the best described changes. A few PTMs have been shown to regulate polycystin trafficking, signalling, localisation or stability and thus their physiological function. A key challenge for the future will be to elucidate the functional significance of all the individual PTMs reported to date. Finally, it is possible that site-specific mutations that disrupt PTM could contribute to cystogenesis although in the majority of cases, confirmatory evidence is awaited.  相似文献   

5.
Polycystin-1 is the gene product of PKD1, the first gene identified to be causative for the condition of autosomal dominant polycystic kidney disease (ADPKD). Mutations in PKD1 are responsible for the majority of ADPKD cases worldwide. Polycystin-1 is a protein of the transient receptor potential channels superfamily, with 11 transmembrane spans and an extracellular N-terminal region of approximately 3109 amino acid residues, harboring multiple putative ligand binding domains. We demonstrate here that annexin A5 (ANXA5), a Ca(2+) and phospholipid binding protein, interacts with the N-terminal leucine-rich repeats of polycystin-1, in vitro and in a cell culture model. This interaction is direct and specific and involves a conserved sequence of the ANXA5 N-terminal domain. Using Madin-Darby canine kidney cells expressing polycystin-1 in an inducible manner we also show that polycystin-1 colocalizes with E-cadherin at cell-cell contacts and accelerates the recruitment of intracellular E-cadherin to reforming junctions. This polycystin-1 stimulated recruitment is significantly delayed by extracellular annexin A5.  相似文献   

6.
7.
A tale of two tails: ciliary mechanotransduction in ADPKD   总被引:3,自引:0,他引:3  
Autosomal dominant polycystic kidney disease (ADPKD) is a common lethal genetic disorder, characterized by the progressive development of fluid-filled cysts in the kidney, pancreas and liver, and anomalies of the cardiovascular system. Mutations in PKD1 and PKD2, which encode the transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2) respectively, account for almost all cases of ADPKD. However, the mechanisms by which abnormalities in PKD1 and PKD2 lead to aberrant kidney development remain unknown. Recent progress in the understanding of ADPKD has focused on primary cilia, which act as sensory transducers in renal epithelial cells. New evidence shows that a mechanosensitive signal, cilia bending, activates the PC1-PC2 channel complex. When working properly, this functional complex elicits a transient Ca(2+) influx, which is coupled to the release of Ca(2+) from intracellular stores.  相似文献   

8.
The gene for the most common form of autosomal dominant polycystic kidney disease (ADPKD), PKD1, has recently been characterized and shown to encode an integral membrane protein, polycystin-1, which is involved in cell-cell and cell-matrix interactions. Until now, approximately 30 mutations of the 3' single copy region of the PKD1 gene have been reported in European and American populations. However, there is no report of mutations in Asian populations. Using the polymerase chain reaction and single-strand conformation polymorphism (SSCP) analysis, 91 Korean patients with ADPKD were screened for mutation in the 3' single copy region of the PKD1 gene. As a result, we have identified and characterized six mutations: three frameshift mutations (11548del8bp, 11674insG and 12722delT), a nonsense mutation (Q4010X), and two missense mutations (R3752W and D3814N). Five mutations except for Q4010X are reported here for the first time. Our findings also indicate that many different mutations are likely to be responsible for ADPKD in the Korean population. The detection of additional disease-causing PKD1 mutations will help in identifying the location of the important functional regions of polycystin-1 and help us to better understand the pathophysiology of ADPKD.  相似文献   

9.
Autosomal dominant polycystic kidney disease (ADPKD) is caused by heterozygous mutations in either PKD1 or PKD2, genes that encode polycystin-1 and polycystin-2, respectively. We show here that tumor necrosis factor-alpha (TNF-alpha), an inflammatory cytokine present in the cystic fluid of humans with ADPKD, disrupts the localization of polycystin-2 to the plasma membrane and primary cilia through a scaffold protein, FIP2, which is induced by TNF-alpha. Treatment of mouse embryonic kidney organ cultures with TNF-alpha resulted in formation of cysts, and this effect was exacerbated in the Pkd2(+/-) kidneys. TNF-alpha also stimulated cyst formation in vivo in Pkd2(+/-) mice. In contrast, treatment of Pkd2(+/-) mice with the TNF-alpha inhibitor etanercept prevented cyst formation. These data reveal a pathway connecting TNF-alpha signaling, polycystins and cystogenesis, the activation of which may reduce functional polycystin-2 below a critical threshold, precipitating the ADPKD cellular phenotype.  相似文献   

10.
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic inherited renal cystic disease that occurs in different races worldwide. It is characterized by the development of a multitude of renal cysts, which leads to massive enlargement of the kidney and often to renal failure in adulthood. ADPKD is caused by a mutation in PKD1 or PKD2 genes encoding the proteins polycystin-1 and polycystin-2, respectively. Recent studies showed that cyst formation and growth result from deregulation of multiple cellular pathways like proliferation, apoptosis, metabolic processes, cell polarity, and immune defense. In ADPKD, intracellular cyclic adenosine monophosphate (cAMP) promotes cyst enlargement by stimulating cell proliferation and transepithelial fluid secretion. Several interventions affecting many of these defective signaling pathways have been effective in animal models and some are currently being tested in clinical trials. Moreover, the stem cell therapy can improve nephropathies and according to studies were done in this field, can be considered as a hopeful therapeutic approach in future for PKD. This study provides an in-depth review of the relevant molecular pathways associated with the pathogenesis of ADPKD and their implications in development of potential therapeutic strategies.  相似文献   

11.
Autosomal dominant polycystic kidney disease (ADPKD) and nephronophthisis (NPH) share two common features: cystic kidneys and ciliary localized gene products. Mutation in either the PKD1 or PKD2 gene accounts for 95% of all ADPKD cases. Mutation in one of four genes (NPHP1-4) results in nephronophthisis. The NPHP1, NPHP2, PKD1, and PKD2 protein products (nephrocystin-1, nephrocystin-2 or inversin, polycystin-1, and polycystin-2, respectively) localize to primary cilia of renal epithelia. However, the relationship between the nephrocystins and polycystins, if any, is unknown. In the nematode Caenorhabditis elegans, the LOV-1 and PKD-2 polycystins localize to male-specific sensory cilia and are required for male mating behaviors. To test the hypothesis that ADPKD and NPH cysts arise from a common defect in cilia, we characterized the C. elegans homologs of NPHP1 and NPHP4. C. elegans nphp-1 and nphp-4 are expressed in a subset of sensory neurons. GFP-tagged NPHP-1 and NPHP-4 proteins localize to ciliated sensory endings of dendrites and colocalize with PKD-2 in male-specific sensory cilia. The cilia of nphp-1(ok500) and nphp-4(tm925) mutants are intact. nphp-1; nphp-4 double, but not single, mutant males are response defective. We propose that NPHP-1 and NPHP-4 proteins play important and redundant roles in facilitating ciliary sensory signal transduction.  相似文献   

12.
Autosomal dominant polycystic kidney disease (ADPKD) is one of the commonest inherited human disorders yet remains relatively unknown to the wider medical, scientific and public audience. ADPKD is characterised by the development of bilateral enlarged kidneys containing multiple fluid-filled cysts and is a leading cause of end-stage renal failure (ESRF). ADPKD is caused by mutations in two genes: PKD1 and PKD2. The protein products of the PKD genes, polycystin-1 and polycystin-2, form a calcium-regulated, calcium-permeable ion channel. The polycystin complex is implicated in regulation of the cell cycle via multiple signal transduction pathways as well as the mechanosensory function of the renal primary cilium, an enigmatic cellular organelle whose role in normal physiology is still poorly understood. Defects in cilial function are now documented in several other human diseases including autosomal recessive polycystic kidney disease, nephronophthisis, Bardet-Biedl syndrome and many animal models of polycystic kidney disease. Therapeutic trials in these animal models of polycystic kidney disease have identified several promising drugs that ameliorate disease severity. However, elucidation of the function of the polycystins and the primary cilium will have a major impact on our understanding of renal cystic diseases and will create exciting new opportunities for the design of disease-specific therapies.  相似文献   

13.
Most cases of autosomal dominant polycystic kidney disease (ADPKD) are the result of mutations in the PKD1 gene. The PKD1 gene codes for a large cell-surface glycoprotein, polycystin-1, of unknown function, which, based on its predicted domain structure, may be involved in protein-protein and protein-carbohydrate interactions. Approximately 30% of polycystin-1 consists of 16 copies of a novel protein module called the PKD domain. Here we show that this domain has a beta-sandwich fold. Although this fold is common to a number of cell-surface modules, the PKD domain represents a distinct protein family. The tenth PKD domain of human and Fugu polycystin-1 show extensive conservation of surface residues suggesting that this region could be a ligand-binding site. This structure will allow the likely effects of missense mutations in a large part of the PKD1 gene to be determined.  相似文献   

14.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of multiple fluid-filled cysts that expand over time and destroy the renal architecture. Loss or mutation of polycystin-1 or polycystin-2, the respective proteins encoded by the ADPKD genes PKD1 and PKD2, is associated with most cases of ADPKD. Thus, the polycystin proteins likely play a role in cell proliferation and morphogenesis. Recent studies indicate that polycystin-1 is involved in these processes, but little is known about the role played by polycystin-2. To address this question, we created a number of related cell lines variable in their expression of polycystin-2. We show that the basal and epidermal growth factor-stimulated rate of cell proliferation is higher in cells that do not express polycystin-2 versus those that do, indicating that polycystin-2 acts as a negative regulator of cell growth. In addition, cells not expressing polycystin-2 exhibit significantly more branching morphogenesis and multicellular tubule formation under basal and hepatocyte growth factor-stimulated conditions than their polycystin-2-expressing counterparts, suggesting that polycystin-2 may also play an important role in the regulation of tubulogenesis. Cells expressing a channel mutant of polycystin-2 proliferated faster than those expressing the wild-type protein, but exhibited blunted tubule formation. Thus, the channel activity of polycystin-2 may be an important component of its regulatory machinery. Finally, we show that polycystin-2 regulation of cell proliferation appears to be dependent on its ability to prevent phosphorylated extracellular-related kinase from entering the nucleus. Our results indicate that polycystin-2 is necessary for the proper growth and differentiation of kidney epithelial cells and suggest a possible mechanism for the cyst formation seen in ADPKD2.  相似文献   

15.
Mutations in the PKD1 gene are responsible for 85% of cases of autosomal dominant polycystic kidney disease (ADPKD). This gene encodes a large membrane associated glycoprotein, polycystin-1, which is predicted to contain a number of extracellular protein motifs, including a C-type lectin domain between amino acids 403--532. We have cloned and expressed the PKD1 C-type lectin domain, and have demonstrated that it binds carbohydrate matrices in vitro, and that Ca(2+) is required for this interaction. This domain also binds to collagens type I, II and IV in vitro. This binding is greatly enhanced in the presence of Ca(2+) and can be inhibited by soluble carbohydrates such as 2-deoxyglucose and dextran. These results suggest that polycystin-1 may be involved in protein-carbohydrate interactions in vivo. The data presented indicate that there may a direct interaction between the PKD1 gene product and an ubiquitous extracellular matrix (ECM) protein.  相似文献   

16.
PKD2 is one of the two genes mutated in ADPKD (autosomal-dominant polycystic kidney disease). The protein product of PKD2, polycystin-2, functions as a non-selective cation channel in the endoplasmic reticulum and possibly at the plasma membrane. Hydrophobicity plots and its assignment to the TRP (transient receptor potential) family of cation channels suggest that polycystin-2 contains six transmembrane domains and that both the N- and C-termini extend into the cytoplasm. However, no experimental evidence for this model has so far been provided. To determine the orientation of the different loops of polycystin-2, we truncated polycystin-2 within the predicted loops 1-5 and tagged the constructs at the C-terminus with an HA (haemagglutinin) epitope. After transient expression and selective membrane permeabilization, immunofluorescence staining for the HA epitope revealed that loops 1, 3 and 5 extend into the lumen of the endoplasmic reticulum or the extracellular space, whereas loops 2 and 4 extend into the cytoplasm. This approach also confirmed the cytoplasmic orientation of the N- and C-termini of polycystin-2. In accordance with the immunofluorescence data, protease protection assays from microsomal preparations yielded protected fragments when polycystin-2 was truncated in loops 1, 3 and 5, whereas no protected fragments could be detected when polycystin-2 was truncated in loops 2 and 4. The results of the present study therefore provide the first experimental evidence for the topological orientation of polycystin-2.  相似文献   

17.
Recently the second gene for autosomal dominant polycystic kidney disease (ADPKD), located on chromosome 4q21-q22, has been cloned and characterized. The gene encodes an integral membrane protein, polycystin-2, that shows amino acid similarity to the PKD1 gene product and to the family of voltage-activated calcium (and sodium) channels. We have systematically screened the gene for mutations by single-strand conformation-polymorphism analysis in 35 families with the second type of ADPKD and have identified 20 mutations. So far, most mutations found seem to be unique and occur throughout the gene, without any evidence of clustering. In addition to small deletions, insertions, and substitutions leading to premature translation stops, one amino acid substitution and five possible splice-site mutations have been found. These findings suggest that the first step toward cyst formation in PKD2 patients is the loss of one functional copy of polycystin-2.  相似文献   

18.
Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent genetic disorder largely caused by mutations in the PKD1 and PKD2 genes that encode the transmembrane proteins polycystin-1 and -2, respectively. Both proteins appear to be involved in the regulation of cell growth and maturation, but the precise mechanisms are not yet well defined. Polycystin-2 has recently been shown to function as a Ca(2+)-permeable, non-selective cation channel. Polycystin-2 interacts through its cytoplasmic carboxyl-terminal region with a coiled-coil motif in the cytoplasmic tail of polycystin-1 (P1CC). The functional consequences of this interaction on its channel activity, however, are unknown. In this report, we show that P1CC enhanced the channel activity of polycystin-2. R742X, a disease-causing polycystin-2 mutant lacking the polycystin-1 interacting region, fails to respond to P1CC. Also, P1CC containing a disease-causing mutation in its coiled-coil motif loses its stimulatory effect on wild-type polycystin-2 channel activity. The modulation of polycystin-2 channel activity by polycystin-1 may be important for the various biological processes mediated by this molecular complex.  相似文献   

19.
20.
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most commonly inherited renal diseases. ADPKD is a genetically heterogeneous disorder involving at least three different genes. PKD1, the major locus mapped to chromosome 16p13.3 accounts for approximately 85% of ADPKD cases. The search for mutations is a very important step in understanding the molecular mechanisms underlying ADPKD. Despite intense screening by many groups, only a small number of mutations have been described so far. We undertook the first study using denaturing gradient gel electrophoresis (DGGE) to scan for mutations in the non-duplicated region of the PKD1 gene in a large cohort of 146 French unrelated ADPKD patients. We successfully identified novel mutations: 3 are frameshift mutations, 2 nonsense mutations, 2 missense mutations, 1 is an insertion in the frame of 9 nucleotides, 3 intronic variations and several polymorphisms. One of these mutations is the fourth de novo mutation described in this gene. We also describe a family with possible clinical anticipation. DGGE is an effective method for detecting nucleotide changes in the PKD1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号