首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Investigations of the effect of 2-hydroxy-3-butynoic acid and its methyl ester on photosynthesis in Hordeum vulgare are reported. In the presence of either of these compounds the assimilation of 14CO2 was greatly decreased. The labelling patterns showed massive accumulation of glycollate and greatly reduced incorporation into sucrose and other products of photosynthesis. The inhibition was specific for the S(+) enantiomers. In greening barely the S(+) enantiomers inhibited formation of chloroplast pigments, and this was paralleled by inhibition of glycollate oxidase. This was the only enzyme of the glycollate pathway whose activity was significantly decreased after inhibitor treatments. Of a range of metabolises tested, only supplementations with glycine and glutamate or glycine, serine and succinate fully restored greening.  相似文献   

2.
  1. Phototrophic cultures of Rhodomicrobium vannielii do not excrete glycollate when gassed anaerobically with nitrogen plus carbon dioxide, although the addition of α-hydroxy-2-pyridine methanesulphonate (HPMS) results in the excretion of a trace amount of glycollate. The inclusion of low amounts of oxygen in this gas mixture results in marked glycollate excretion, higher rates occurring in the presence of HPMS.
  2. Cell extracts of Rhodomicrobium vannielii, and also of Rhodospirillum rubrum, which excretes glycollate only under aerobic conditions in the light, catalyze the formation of glycollate from phosphoglycollate and also the oxidation of glycollate to glyoxylate.
  相似文献   

3.
In greening leaf segments amino-oxyacetate inhibited both chlorophyll and carotenoid formation by ca 60 % at 0.5 mM inhibitor concentration. In greening tissue serine: glyoxylate aminotransferase was the only enzyme of the glycollate pathway whose activity was markedly decreased after inhibitor treatment. The inhibition of pigment formation in barley and maize could be alleviated by glyoxylate, pyruvate and acetaldehyde; in the latter case there is probably a preferential reaction with inhibitor which displaces it from combination with enzymic pyridoxal 5′-phosphate.  相似文献   

4.
When division synchronized cultures of Euglena gracilis Klebs (strain Z) were aerated with 5% CO2 in air the specific activity of glycollate dehydrogenase was only 13% of that in cultures receiving unsupplemented air. The concentrations of 10-formyltetrahydrofolate synthetase (EC 6.3.4.3) and formylfolate derivatives were also lowered by this treatment. In contrast, the specific activity of serine hydroxymethyltransferase (EC 2.1.2.1) and the concentration of methylfolates were raised by supplying CO2-supplemented air. These effects on enzyme levels were reversed when air was supplied following a period of CO2 treatment. The levels of glycollate dehydrogenase, 10-formyl-tetrahydrofolate synthetase and formylfolate derivatives were decreased when cells were aerated in media containing 5 mM α-hydroxy-2-pyridinemethane sulphonate. Cell free extracts had the ability to decarboxylate glyoxylate, producing ca equal amounts of CO2 and formate from C-1 and C-2 respectively. Cells receiving 5% CO2 in air had a decreased ability to incorporate formate-[14C] into serine and methionine. It is concluded that during growth at low CO2 concentrations glycollate metabolism will provide substrate for the formyltetrahydrofolate synthetase reaction.  相似文献   

5.
O-Peracetylated methyl 3-(d-glycopyranosylthio)propanoates of β-d-gluco, and α- and β-d-galacto configurations were oxidized to the corresponding S,S-dioxides (sulfones) by Oxone® or MCPBA. Oxidation of the β-d-gluco derivative with H2O2/Na2WO4 gave the corresponding S-oxide (sulfoxide). DBU-induced elimination of methyl acrylate from the β-d-gluco and β-d-galacto configured S,S-dioxides (sulfones) gave O-peracetylated β-d-glycopyranosyl-1-C-sulfinates which, on treatment with H2NOSO3H, furnished the corresponding β-d-glycopyranosyl-1-C-sulfonamides. Radical-mediated bromination of the protected methyl 3-(β-d-glycopyranosylthio)propanoate S,S-dioxides gave mixtures of 1-C- and 5-C-bromoglycosyl compounds. Similar brominations of the O-peracetylated β-d-glycopyranosyl-1-C-sulfonamides resulted in the formation of α-d-glycopyranosyl bromides and 1-C- and 5-C-bromoglycosyl sulfonamides. A rationale for these observations was proposed. Methyl 3-(β-d-glucopyranosylthio)propanoate, its S,S-dioxide, and β-d-glucopyranosyl-1-C-sulfonamide proved inefficient when tested as inhibitors of rabbit muscle glycogen phosphorylase b.  相似文献   

6.
On the basis that meta-chlorophenylpiperazine (mCPP; 1) is a nonselective 5-HT2C agonist, that benz-fused tryptamines (e.g., 5) display enhanced 5-HT2 affinity, and that certain isotryptamines 3 reportedly bind with enhanced affinity and selectivity at 5-HT2C receptors, we prepared and examined a series of isotryptamine-related analogues as potentially selective 5-HT2C agonists. None of the compounds displayed selectivity for 5-HT2C versus 5-HT2A receptors. Detailed re-examination of a compound previously reported to display 100-fold 5-HT2C selectivity [i.e., S(+)-5,6-difluoro-α-methylisotryptamine] revealed that its selectivity versus 5-HT2A receptors was, at best, only 10-fold.  相似文献   

7.
(+)-Cyclazosin [(+)-1] is one of most selective antagonists of the α1B-adrenoceptor subtype (selectivity ratios, α1B1A?=?13, α1B1D?=?38–39). To improve the selectivity, we synthesized and pharmacologically studied the blocking activity against α1-adrenoceptors of several homochiral analogues of (+)-cyclazosin featuring different substituents on the carbonyl or amine groups, namely (?)-2, (+)-3, (?)-4(?)-8, (+)-9. Moreover, we studied the activity of some their opposite enantiomers, namely (?)-1, (?)-3, (+)-6, and (?)-9, to evaluate the influence of stereochemistry on selectivity. The benzyloxycarbonyl and methyl (4aS,8aR) analogues (+)-3 and (?)-6 improved in a significant way the α1B selectivity of the progenitor compound: 4 and 14 time vs. the α1D subtype and 35 and 77 times vs. the α1A subtype, respectively. The study confirmed the importance of the hydrophobic cis-octahydroquinoxaline moiety of these molecules for the establishment of interactions with the α1-adrenoceptors as well that of their (4aS,8aR) stereochemistry to grant selectivity for the α1B subtype. Hypotheses on the mode of interaction of these compounds were advanced on the basis of molecular modeling studies performed on compound (+)-3.  相似文献   

8.
The importance of glyoxylate in amino acid biosynthesis in plants   总被引:3,自引:1,他引:2       下载免费PDF全文
1. [14C2]Glyoxylate was rapidly metabolized by carrot storage tissues, pea leaves, pea cotyledons, sunflower cotyledons, corn coleoptiles, corn roots and pea roots. In many tissues over 70% of the supplied [14C2]glyoxylate was utilized during the 6hr. experimental periods. 2. In all tissues, the chief products of [14C2]-glyoxylate metabolism were carbon dioxide, glycine and serine. In several of the tissues, there was also a considerable incorporation of the label into the organic acids, particularly into glycollate. 3. Degradations of the labelled serine produced during [14C2]glyoxylate metabolism showed that glyoxylate carbon was incorporated into all three positions of the serine molecule. 4. The results are interpreted as indicating that glyoxylate is utilized by the tissues by pathways involving transamination, transmethylation, reduction and oxidative decarboxylation of the supplied glyoxylate.  相似文献   

9.
The possible effect of L-methionine supplements on the folate metabolism of division-synchronized Euglena gracilis (strain Z) cells has been examined. Cells receiving 1 mM L-methionine for four cell cycles were examined for folate derivatives, prior to and during cell division. Before cell division, methionine-supplemented cells contained less formylfolate but more methylfolate than unsupplemented cells. During division, both types of folates were present in lower concentrations in the supplemented cells. Growth in methionine for 10 and 34 hr also increased the levels of free aspartate, threonine, serine, cysteine and methionine relative to the controls. Methionine-supplemented cells contained ca 50% of the 10-formyltetrahydrofolate synthetase (EC 6.3.4.3) activity per cell of unsupplemented control cultures and specific enzyme activity was reduced ca 90%. Supplemented cells contained almost twice as much serine hydroxymethyltransferase (EC 2.1.2.1) activity per cell but comparable levels of glycollate dehydrogenase. Growth in methionine also reduced the incorporation of formate-14C] into serine, RNA, DNA, adenine and protein methionine. In contrast, incorporation of glycine-[2-14C] and serine-[3-14C] into folate-related products was not greatly altered by this treatment. Levels of radioactivity in these products suggested that formate was a more important C1 unit source than glycine or serine when growth occurred in unsupplemented medium. It is concluded that methionine reduces formylfolate production by an effect on the cellular levels of formyltetrahydrofolate synthetase.  相似文献   

10.
The inhibition of greening of illuminated etiolated maize seedlings by isonicotinyl hydrazide can be alleviated by serine or pyruvate. The similar inhibition in barley can be reversed only by pyruvate. In both plants earlier intermediates in the glycollate pathway and other related compounds were ineffective in overcoming the inhibition of greening produced by isonicotinyl hydrazide. In maize seedlings radioactivity from l-serine-[3-14C] is poorly incorporated into β-carotene, a typical chloroplast terpenoid, unless glycine and formate or, more effectively, glycine together with isonicotinyl hydrazide are supplied. These supplementations may minimize interconversion of serine and glycine, and hence dilution of radioactivity at C-3 of l-serine by unlabelled C-1 units, before incorporation into terpenoids. The results support the view that in young greening tissue the C2-3 fragment of l-serine can give rise to acetyl-CoA, an obligatory precursor of chloroplast terpenoids.  相似文献   

11.
The structures of three new 11-monomethoxy pentacyclic oxindole alkaloids have been elucidated by chemical correlations with reserpinine: caboxine-A was assigned to the allo C19-méthyl α series: 3S, 4R, 7S, 19S; isocaboxine-A and B to the epi-allo C19-methyl α series and have, respectively, the following configurations 3R, 4S, 7S, 19S and 3R, 4S, 7R, 19S.  相似文献   

12.
The trunk wood of Clinostemon mahuba contains eight (3R)-2-alkylidene-3-hydroxy-4-methylenebutanolides, seven (3R,4S)-2-alkylidene-3-hydroxy-4-methylbutanolides and seven (3S,4S)-2-alkylidene-3-hydroxy-4-methylbutanolides distinguished by the alkylidene side chains with respect to their E- or Z-geometry, ethenyl, ethynyl or ethyl terminals and lengths (C16 or C18).  相似文献   

13.
The linked utilization of glycollate and L-serine has been studied in peroxisomal preparations from leaves of spinach beet (Beta vulgaris L.). The generation of glycine from glycollate was found to be balanced by the production of hydroxypyruvate from serine and similarly by 2-oxoglutarate when L-glutamate was substituted for L-serine. In the presence of L-malate and catalytic quantities of NAD+, about 40% of the hydroxypyruvate was converted further to glycerate, whereas with substrate quantities of NADH, this conversion was almost quantitative. CO2 was released from the carboxyl groups of both glycollate and serine. Since the decarboxylation of both substrates was greatly in creased by the catalase inhibitor, 3-amino-1,2,4-triazole, and abolished by bovine liver catalase, it was attributed to the nonenzymic attack of H2O2, generated in glycollate oxidation, upon glyoxylate and hydroxypyruvate respectively. At 25–30° C, about 10% of the glyoxylate and hydroxypyruvate accumulated was decarboxylated, and the release of CO2 from each keto-acid was related to the amounts present. It is suggested that hydroxypyruvate decarboxylation might contribute significantly to photorespiration and provide a metabolic route for the complete oxidation of glycollate, the magnitude of this contribution depending upon the concentrations of glyoxylate and hydroxypyruvate in the peroxisomes.  相似文献   

14.
The electrochemical behavior of the S,S-bridged adducts of square planar metalladithiolene complexes was investigated by using cyclic voltammetry and electrochemical spectroscopies (visible, near-IR, and ESR). The norbornene-bridged S,S-adduct [Ni(S2C2Ph2)2(C7H8)] (2a; C7H8=norbornene) formed by [Ni(S2C2Ph2)2] (1a) and quadricyclane (Q) was dissociated by an electrochemical reduction, and anion 1a and norbornadiene (NBD) were formed. Q was isomerized to NBD in the overall reaction. The o-xylyl-bridged S,S-adduct [Ni(S2C2Ph2)2(CH2)2(C6H4)] (3a; (CH2)2(C6H4)=o-xylyl) was also dissociated by an electrochemical reduction, and this reaction gave the o-xylyl radical (o-quinodimethane). The reduction of complex 3a in the presence of excess o-xylylene dibromide underwent the catalytic formation of o-quinodimethane. The butylene-bridged S,S-adduct [Ni(S2C2Ph2)2(CH2)4] (4a; (CH2)4=butylene) was stable on an electrochemical reduction. The lifetimes of reduced species of these adducts 2a-4a were influenced by the stability of the eliminated group (stability: NBD > o-xylyl radical (o-quinodimethane) > butylene radical). Therefore, the reduced species are stable in the sequence 4a > 3a > 2a. Although the palladium complex [Pd(S2C2Ph2)2] (1b) was easier to reduce than the nickel complex 1a or the platinum complex [Pt(S2C2Ph2)2] (1c), their S,S-adducts were easier to reduce in the order of Ni adduct > Pd adduct > Pt adduct.  相似文献   

15.
Abstract Carbon fluxes in photosynthesis and photorespiration of water stressed leaves have been analysed in a steady state model based on the ribulose diphosphate carboxylase (RuDP carboxylase) and RuDP oxygenase enzyme activities and the CO2 and O2 concentrations in the leaf. Agreement between predicted and observed photorespiration (Lawlor & Fock, 1975) and C flux in the glycollate pathway is good over much of the range of water stress, but not at severe stress. An alternative source of respiratory CO2 is suggested to explain the discrepancy. The model suggests that resistance to CO2 fixation is mainly in the carboxylation reactions, not in CO2 transport. Using the steady state model, the kinetics of 14C incorporation into photosynthetic and photorespiratory intermediates are simulated. The predicted rate of 14C incorporation is faster than observed and delay terms in the model are used to simulate the slow rates of mixing and metabolic reactions. Inactive pools of glycine and serine are suggested to explain the observed specific activities of glycine and serine. Three models of carbon flux between the glycollate pathway, the photosynthetic carbon reduction cycle and sucrose synthesis are considered. The most satisfactory simulation is for glycollate pathway carbon feeding into the PCR cycle pool of 3-phosphoglyceric acid which provides the carbon for sucrose synthesis. Simulation of the specific activity of CO2 released in photorespiration suggests that a source of unlabelled carbon may contribute to photorespiration.  相似文献   

16.
Summary When Chlorella pyrenoidosa photoassimilates 3H–14C-acetate glycollic acid rapidly becomes labelled with both tritium and 14C. The 3H/14C ratio was 10 in glycollate, (compared with 4 in the acetate added) and the only other intermediates showing similar 3H/14C ratios to glycollate were glycerate and serine. This suggests a glycollate pathway for the formation of serine was operating in Chlorella pyrenoidosa during the photoassimilation of acetate. When Chlorella pyrenoidosa assimilated 3H–14C-acetate in the dark glycollate was not labelled with either 14C or tritium. Although glycerate and serine both became labelled with 14C and tritium in the dark they did not show the high 3H/14C ratios recorded in the light. When cells were aerated with unlabelled 5% CO2 during the photoassimilation of 3H–14C-acetate, the 3H/14C ratios of glycollate, glycerate and serine were slightly decreased. Similarly, under anaerobic conditions in the light the 3H/14C ratio was decreased compared with aerobic conditions.  相似文献   

17.
A stereoselective high-performance liquid chromatographic method that utilizes fluorescence detection was developed for the selective and sensitive quantification of R(−)- and S(+)-enantiomers of MK-571 (1), a potent and specific leukotriene D4 antagonist, in human plasma. Racemic 1 was isolated from the acidified plasma using solid-phase extraction and the resulting residue was successfully reacted with isobutyl chloroformate and R(+)-1-(1-naphthyl)ethylamine in triethylamine—acetonitrile medium to form the diastereomer of each enantiomer. A structural analogue of 1 was used as internal standard. The derivatized sample was dissolved in 1,1,2-trichlorotrifluoroethane and an aliquot was chromatographed on a (R)-urea chiral column using a mobile phase containing 89% triethylamine—pentane (3:1000, v/v), 10% 2-propanol, and 1% acetonitrile at a flow-rate of 1.5 ml/min. The fluorescence response (excitation wavelength, 350 nm; emission wavelength, 410 nm) was linear (r2>0.999) for concentrations of enantiomers of 1 from 0.05 μg/ml, the lowest quantitation limit, up to 2.5 μg/ml. Intra-day coefficients of variation at 0.05 μg/ml were 2.4% for the R(−)-isomer and 2.0% for S(+)-isomer. The corresponding inter-day coefficients of variation for R(−)- and S(+)-1 were 2.6 and 3.6%, respectively. The utilit of the methodology was established by analysis of plasma samples from male volunteers receiving single intravenous and oral doses of racemic 1.  相似文献   

18.
Starting from the heterotopic multidentate ligand 1,2-phenylenebis(thio)diacetic acid (1), cis-rac-[PdCl2{1,2-(HOOCCH2S)2C6H42S,S′}] (2), cis-rac-[Rh{1,2-(HOOCCH2S)2C6H42S,S′}(cod)]BF4 (3) and cis-rac-[Ni{1,2-(OOCCH2S)2C6H44O,OS,S′}{cis-(C3H4N2)}2] (4) were prepared and characterised by X-ray diffraction and conventional spectroscopic techniques. Compounds 1-4 show extensive hydrogen-bonded networks (XH?O, X = O, N) in the solid state.  相似文献   

19.
A new natural product, 2(S),3(S)-3-hydroxy-4-methyleneglutamic acid (G3) has been isolated from seeds of Gleditsia caspica. The structure has been established by chemical and spectroscopic methods. Catalytic reduction of G3 yields 2(S),4(S)-4-methylglutamic acid and a new amino acid, 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid. Ozonolysis of G3 followed by oxidation gives 2(S),3(R)-3-hydroxyaspartic acid. The S- (or l-) configurations at C2 in G3 and in 2(S),3(S),4(S)-3-hydroxy-4-methyglutamic acid and the S-configurations at C3 for G3 and 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid and at C4 for 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid are inferred from the configurations at C2 in 2(S),4(S)-4-methylglutamic acid and at C2 and C3 in 2(S),3(R)-3-hydroxyaspartic acid. The seeds also contain appreciable quantities of 2(S),3(S),4(R)-3-hydroxy-4-methylglutami c acid (G1) and 2(S),4(R)-4-methylglutamic acid.  相似文献   

20.
G. A. Codd  M. J. Merrett 《Planta》1970,95(2):127-132
Summary The kinetics of chlorophyll formation during the greening of dark-grown Euglena gracilis was accompanied by marked increases in activity of the enzymes of glycollate metabolism; glycollate: DCPIP1 oxidoreductase and phosphoglycollate phosphatase (E.C. 3.1.3.18.). Inhibitors of protein synthesis indicated a de novo synthesis of these enzymes during the development of the photosynthetic system. The inhibitory effects of chloramphenicol and cycloheximide, together with a non-aqueous localisation of glycollate: DCPIP oxidoreductase in photoautotrophically-grown cells, indicated that this enzyme is synthesized and located in the cytoplasm, while phosphoglycollate phosphatase was synthesized in the chloroplast. Glycollate: DCPIP oxidoreductase did not increase above the low level in heterotrophic cells when exogenous glycollate, in the presence or absence of glucose, was supplied in the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号